Maths Gcse Wjec-Eduqas Higher
-
Scatter-Graphs-And-Correlation Wjec-Eduqas Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Wjec-Eduqas Higher4 主题
-
Histograms Wjec-Eduqas Higher3 主题
-
Statistical-Diagrams- Wjec-Eduqas Higher6 主题
-
Averages-Ranges-And-Data Wjec-Eduqas Higher8 主题
-
Questionnaires Wjec-Eduqas Higher
-
Population-And-Sampling Wjec-Eduqas Higher
-
Comparing-Data-Sets Wjec-Eduqas Higher
-
Range-And-Interquartile-Range Wjec-Eduqas Higher
-
Averages-From-Grouped-Data Wjec-Eduqas Higher
-
Averages-From-Tables- Wjec-Eduqas Higher
-
Calculations-With-The-Mean Wjec-Eduqas Higher
-
Mean-Median-And-Mode Wjec-Eduqas Higher
-
Questionnaires Wjec-Eduqas Higher
-
Combined-And-Conditional-Probability Wjec-Eduqas Higher3 主题
-
Tree-Diagrams- Wjec-Eduqas Higher1 主题
-
Simple-Probability-Diagrams- Wjec-Eduqas Higher3 主题
-
Introduction-To-Probability Wjec-Eduqas Higher3 主题
-
Transformations Wjec-Eduqas Higher5 主题
-
Vectors Wjec-Eduqas Higher6 主题
-
3D-Pythagoras-And-Trigonometry Wjec-Eduqas Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles- Wjec-Eduqas Higher4 主题
-
Pythagoras-And-Trigonometry Wjec-Eduqas Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Wjec-Eduqas Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Higher5 主题
-
Volume-And-Surface-Area- Wjec-Eduqas Higher3 主题
-
Circles-Arcs-And-Sectors- Wjec-Eduqas Higher2 主题
-
Area-And-Perimeter- Wjec-Eduqas Higher4 主题
-
Circle-Theorems Wjec-Eduqas Higher7 主题
-
Circle-Theorem-Proofs Wjec-Eduqas Higher
-
The-Alternate-Segment-Theorem Wjec-Eduqas Higher
-
Angles-In-The-Same-Segment Wjec-Eduqas Higher
-
Angles-In-Cyclic-Quadrilaterals Wjec-Eduqas Higher
-
Theorems-With-Chords-And-Tangents Wjec-Eduqas Higher
-
Angle-In-A-Semicircle Wjec-Eduqas Higher
-
Angles-At-Centre-And-Circumference Wjec-Eduqas Higher
-
Circle-Theorem-Proofs Wjec-Eduqas Higher
-
Bearings-Scale-Drawing-Constructions-And-Loci Wjec-Eduqas Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Higher3 主题
-
Symmetry-And-Shapes Wjec-Eduqas Higher6 主题
-
Exchange-Rates-And-Best-Buys Wjec-Eduqas Higher2 主题
-
Standard-And-Compound-Units- Wjec-Eduqas Higher5 主题
-
Direct-And-Inverse-Proportion- Wjec-Eduqas Higher2 主题
-
Problem-Solving-With-Ratios Wjec-Eduqas Higher2 主题
-
Ratios Wjec-Eduqas Higher3 主题
-
Sequences Wjec-Eduqas Higher4 主题
-
Transformations-Of-Graphs- Wjec-Eduqas Higher2 主题
-
Graphing-Inequalities- Wjec-Eduqas Higher2 主题
-
Solving-Inequalities- Wjec-Eduqas Higher2 主题
-
Real-Life-Graphs Wjec-Eduqas Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Wjec-Eduqas Higher2 主题
-
Equation-Of-A-Circle- Wjec-Eduqas Higher2 主题
-
Graphs-Of-Functions Wjec-Eduqas Higher6 主题
-
Linear-Graphs Wjec-Eduqas Higher4 主题
-
Quadratic-Equations Wjec-Eduqas Higher4 主题
-
Linear-Equations- Wjec-Eduqas Higher1 主题
-
Algebraic-Proof Wjec-Eduqas Higher1 主题
-
Rearranging-Formulae Wjec-Eduqas Higher2 主题
-
Coordinate-Geometry- Wjec-Eduqas Higher4 主题
-
Functions Wjec-Eduqas Higher3 主题
-
Forming-And-Solving-Equations Wjec-Eduqas Higher3 主题
-
Iteration Wjec-Eduqas Higher2 主题
-
Simultaneous-Equations Wjec-Eduqas Higher2 主题
-
Algebraic-Fractions- Wjec-Eduqas Higher4 主题
-
Completing-The-Square Wjec-Eduqas Higher1 主题
-
Factorising Wjec-Eduqas Higher6 主题
-
Expanding-Brackets Wjec-Eduqas Higher3 主题
-
Algebraic-Roots-And-Indices Wjec-Eduqas Higher1 主题
-
Introduction-To-Algebra Wjec-Eduqas Higher4 主题
-
Using-A-Calculator Wjec-Eduqas Higher1 主题
-
Surds Wjec-Eduqas Higher2 主题
-
Rounding-Estimation-And-Bounds Wjec-Eduqas Higher2 主题
-
Fractions-Decimals-And-Percentages Wjec-Eduqas Higher3 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Higher4 主题
-
Percentages Wjec-Eduqas Higher3 主题
-
Fractions Wjec-Eduqas Higher4 主题
-
Powers-Roots-And-Standard-Form Wjec-Eduqas Higher4 主题
-
Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Higher4 主题
-
Number-Operations Wjec-Eduqas Higher10 主题
-
Product-Rule-For-Counting Wjec-Eduqas Higher
-
Systematic-Lists Wjec-Eduqas Higher
-
Related-Calculations- Wjec-Eduqas Higher
-
Multiplication-And-Division Wjec-Eduqas Higher
-
Addition-And-Subtraction Wjec-Eduqas Higher
-
Money-Calculations- Wjec-Eduqas Higher
-
Negative-Numbers- Wjec-Eduqas Higher
-
Irrational-Numbers Wjec-Eduqas Higher
-
Order-Of-Operations-Bidmasbodmas Wjec-Eduqas Higher
-
Mathematical-Symbols Wjec-Eduqas Higher
-
Product-Rule-For-Counting Wjec-Eduqas Higher
Rationalising-Denominators Wjec-Eduqas Higher
Exam code:C300
Rationalising denominators
What does rationalising the denominator mean?
-
If a fraction has a denominator containing a surd then it has an irrational denominator
-
E.g.
or
-
-
The fraction can be rewritten as an equivalent fraction, but with a rational denominator
-
E.g.
or
-
-
The numerator may contain a surd, but the denominator is rationalised
How do I rationalise simple denominators?
-
If the denominator is a surd:
-
Multiply the top and bottom of the fraction by the surd on the denominator
-
<img alt=”fraction numerator a over denominator square root of straight b end fraction equals blank fraction numerator a over denominator square root of straight b end fraction blank cross times blank fraction numerator square root of straight b over denominator square root of straight b end fraction” data-mathml='<math ><semantics><mrow><mfrac><mi>a</mi><msqrt><mi mathvariant=”normal”>b</mi></msqrt></mfrac><mo>=</mo><mi> </mi><mfrac><mi>a</mi><msqrt><mi mathvariant=”normal”>b</mi></msqrt></mfrac><mi> </mi><mo>×</mo><mi> </mi><mfrac><msqrt><mi mathvariant=”normal”>b</mi></msqrt><msqrt><mi mathvariant=”normal”>b</mi></msqrt></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”55″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2255%22%20width%3D%22155%22%20wrs%3Abaseline%3D%2234%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfrac%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmsqrt%3E%3Cmi%20mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmsqrt%3E%3C%2Fmfrac%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3E%26%23xA0%3B%3C%2Fmi%3E%3Cmfrac%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmsqrt%3E%3Cmi%20mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmsqrt%3E%3C%2Fmfrac%3E%3Cmi%3E%26%23xA0%3B%3C%2Fmi%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmi%3E%26%23xA0%3B%3C%2Fmi%3E%3Cmfrac%3E%3Cmsqrt%3E%3Cmi%20mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmsqrt%3E%3Cmsqrt%3E%3Cmi%20mathvariant%3D%22normal%22%3Eb%3C%2Fmi%3E%3C%2Fmsqrt%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math102a87acd26f5771b4d57a7dfb3’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAABIWhlYWQQC2qxAAACuAAAADZoaGVhCGsXSAAAAvAAAAAkaG10eE2rRkcAAAMUAAAADGxvY2EAHTwYAAADIAAAABBtYXhwBT0FPgAAAzAAAAAgbmFtZaBxlY4AAANQAAABn3Bvc3QB9wD6AAAE8AAAACBwcmVwa1uragAABRAAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACAD0A1%2F%2F%2FAAAAPQDX%2F%2F%2F%2FxP8rAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAIAgADrAtUCFQADAAcAZRgBsAgQsAbUsAYQsAXUsAgQsAHUsAEQsADUsAYQsAc8sAUQsAQ8sAEQsAI8sAAQsAM8ALAIELAG1LAGELAH1LAHELAB1LABELAC1LAGELAFPLAHELAEPLABELAAPLACELADPDEwEyE1IR0BITWAAlX9qwJVAcBV1VVVAAIAgABVAtUCgAADAAcARhiwARQAsQAAExCxAAnksQABExCwBDyxBgj0sAI8MAGxCAETELEAA%2FawBzyxAQX1sAY8sgUHABD0sAI8sQkD5rEEBfWwAzwTMwEjETMBI4BVAgBVVf4AVQKA%2FdUCK%2F3VAAAAAAEAAAABAADVeM5BXw889QADBAD%2F%2F%2F%2F%2F1joTc%2F%2F%2F%2F%2F%2FWOhNzAAD%2FIASAA6sAAAAKAAIAAQAAAAAAAQAAA%2Bj%2FagAAF3AAAP%2B2BIAAAQAAAAAAAAAAAAAAAAAAAAMDUgBVA1YAgANWAIAAAAAAAAAAKAAAALIAAAEhAAEAAAADAF4ABQAAAAAAAgCABAAAAAAABAAA3gAAAAAAAAAVAQIAAAAAAAAAAQASAAAAAAAAAAAAAgAOABIAAAAAAAAAAwAwACAAAAAAAAAABAASAFAAAAAAAAAABQAWAGIAAAAAAAAABgAJAHgAAAAAAAAACAAcAIEAAQAAAAAAAQASAAAAAQAAAAAAAgAOABIAAQAAAAAAAwAwACAAAQAAAAAABAASAFAAAQAAAAAABQAWAGIAAQAAAAAABgAJAHgAAQAAAAAACAAcAIEAAwABBAkAAQASAAAAAwABBAkAAgAOABIAAwABBAkAAwAwACAAAwABBAkABAASAFAAAwABBAkABQAWAGIAAwABBAkABgAJAHgAAwABBAkACAAcAIEATQBhAHQAaAAgAEYAbwBuAHQAUgBlAGcAdQBsAGEAcgBNAGEAdABoAHMAIABGAG8AcgAgAE0AbwByAGUAIABNAGEAdABoACAARgBvAG4AdABNAGEAdABoACAARgBvAG4AdABWAGUAcgBzAGkAbwBuACAAMQAuADBNYXRoX0ZvbnQATQBhAHQAaABzACAARgBvAHIAIABNAG8AcgBlAAADAAAAAAAAAfQA%2BgAAAAAAAAAAAAAAAAAAAAAAAAAAuQcRAACNhRgAsgAAABUUE7EAAT8%3D)format(‘truetype’)%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7Dtext%7Bfill%3A%23000000%3B%3C%2Fstyle%3E%3C%2Fdefs%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%222.5%22%20×2%3D%2232.5%22%20y1%3D%2227.5%22%20y2%3D%2227.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20font-style%3D%22italic%22%20text-anchor%3D%22middle%22%20x%3D%2217.5%22%20y%3D%2220%22%3Ea%3C%2Ftext%3E%3Cpolyline%20fill%3D%22none%22%20points%3D%2214%2C-19%2013%2C-19%206%2C0%202%2C-7%22%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20transform%3D%22translate(4.5%2C52.5)%22%2F%3E%3Cpolyline%20fill%3D%22none%22%20points%3D%226%2C0%202%2C-7%201%2C-6%22%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20transform%3D%22translate(4.5%2C52.5)%22%2F%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2218.5%22%20×2%3D%2230.5%22%20y1%3D%2233.5%22%20y2%3D%2233.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2224.5%22%20y%3D%2249%22%3Eb%3C%2Ftext%3E%3Ctext%20font-family%3D%22math102a87acd26f5771b4d57a7dfb3%22%20font-size%3D%2216%22%20text-anchor%3D%22middle%22%20x%3D%2243.5%22%20y%3D%2234%22%3E%3D%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2259.5%22%20×2%3D%2289.5%22%20y1%3D%2227.5%22%20y2%3D%2227.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20font-style%3D%22italic%22%20text-anchor%3D%22middle%22%20x%3D%2274.5%22%20y%3D%2220%22%3Ea%3C%2Ftext%3E%3Cpolyline%20fill%3D%22none%22%20points%3D%2214%2C-19%2013%2C-19%206%2C0%202%2C-7%22%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20transform%3D%22translate(61.5%2C52.5)%22%2F%3E%3Cpolyline%20fill%3D%22none%22%20points%3D%226%2C0%202%2C-7%201%2C-6%22%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20transform%3D%22translate(61.5%2C52.5)%22%2F%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2275.5%22%20×2%3D%2287.5%22%20y1%3D%2233.5%22%20y2%3D%2233.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2281.5%22%20y%3D%2249%22%3Eb%3C%2Ftext%3E%3Ctext%20font-family%3D%22math102a87acd26f5771b4d57a7dfb3%22%20font-size%3D%2216%22%20text-anchor%3D%22middle%22%20x%3D%22105.5%22%20y%3D%2234%22%3E%26%23xD7%3B%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%22121.5%22%20×2%3D%22151.5%22%20y1%3D%2227.5%22%20y2%3D%2227.5%22%2F%3E%3Cpolyline%20fill%3D%22none%22%20points%3D%2214%2C-19%2013%2C-19%206%2C0%202%2C-7%22%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20transform%3D%22translate(123.5%2C23.5)%22%2F%3E%3Cpolyline%20fill%3D%22none%22%20points%3D%226%2C0%202%2C-7%201%2C-6%22%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20transform%3D%22translate(123.5%2C23.5)%22%2F%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%22137.5%22%20×2%3D%22149.5%22%20y1%3D%224.5%22%20y2%3D%224.5%22%2F%3E%3Ctext%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D
-
-
Responses