Back to 课程

Maths Gcse Wjec-Eduqas Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Wjec-Eduqas Higher
    4 主题
  3. Histograms Wjec-Eduqas Higher
    3 主题
  4. Statistical-Diagrams- Wjec-Eduqas Higher
    6 主题
  5. Averages-Ranges-And-Data Wjec-Eduqas Higher
    8 主题
  6. Combined-And-Conditional-Probability Wjec-Eduqas Higher
    3 主题
  7. Tree-Diagrams- Wjec-Eduqas Higher
    1 主题
  8. Simple-Probability-Diagrams- Wjec-Eduqas Higher
    3 主题
  9. Introduction-To-Probability Wjec-Eduqas Higher
    3 主题
  10. Transformations Wjec-Eduqas Higher
    5 主题
  11. Vectors Wjec-Eduqas Higher
    6 主题
  12. 3D-Pythagoras-And-Trigonometry Wjec-Eduqas Higher
    1 主题
  13. Sine-Cosine-Rule-And-Area-Of-Triangles- Wjec-Eduqas Higher
    4 主题
  14. Pythagoras-And-Trigonometry Wjec-Eduqas Higher
    4 主题
  15. Area-And-Volume-Of-Similar-Shapes Wjec-Eduqas Higher
    1 主题
  16. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Higher
    5 主题
  17. Volume-And-Surface-Area- Wjec-Eduqas Higher
    3 主题
  18. Circles-Arcs-And-Sectors- Wjec-Eduqas Higher
    2 主题
  19. Area-And-Perimeter- Wjec-Eduqas Higher
    4 主题
  20. Circle-Theorems Wjec-Eduqas Higher
    7 主题
  21. Bearings-Scale-Drawing-Constructions-And-Loci Wjec-Eduqas Higher
    5 主题
  22. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Higher
    3 主题
  23. Symmetry-And-Shapes Wjec-Eduqas Higher
    6 主题
  24. Exchange-Rates-And-Best-Buys Wjec-Eduqas Higher
    2 主题
  25. Standard-And-Compound-Units- Wjec-Eduqas Higher
    5 主题
  26. Direct-And-Inverse-Proportion- Wjec-Eduqas Higher
    2 主题
  27. Problem-Solving-With-Ratios Wjec-Eduqas Higher
    2 主题
  28. Ratios Wjec-Eduqas Higher
    3 主题
  29. Sequences Wjec-Eduqas Higher
    4 主题
  30. Transformations-Of-Graphs- Wjec-Eduqas Higher
    2 主题
  31. Graphing-Inequalities- Wjec-Eduqas Higher
    2 主题
  32. Solving-Inequalities- Wjec-Eduqas Higher
    2 主题
  33. Real-Life-Graphs Wjec-Eduqas Higher
    4 主题
  34. Estimating-Gradients-And-Areas-Under-Graphs Wjec-Eduqas Higher
    2 主题
  35. Equation-Of-A-Circle- Wjec-Eduqas Higher
    2 主题
  36. Graphs-Of-Functions Wjec-Eduqas Higher
    6 主题
  37. Linear-Graphs Wjec-Eduqas Higher
    4 主题
  38. Quadratic-Equations Wjec-Eduqas Higher
    4 主题
  39. Linear-Equations- Wjec-Eduqas Higher
    1 主题
  40. Algebraic-Proof Wjec-Eduqas Higher
    1 主题
  41. Rearranging-Formulae Wjec-Eduqas Higher
    2 主题
  42. Coordinate-Geometry- Wjec-Eduqas Higher
    4 主题
  43. Functions Wjec-Eduqas Higher
    3 主题
  44. Forming-And-Solving-Equations Wjec-Eduqas Higher
    3 主题
  45. Iteration Wjec-Eduqas Higher
    2 主题
  46. Simultaneous-Equations Wjec-Eduqas Higher
    2 主题
  47. Algebraic-Fractions- Wjec-Eduqas Higher
    4 主题
  48. Completing-The-Square Wjec-Eduqas Higher
    1 主题
  49. Factorising Wjec-Eduqas Higher
    6 主题
  50. Expanding-Brackets Wjec-Eduqas Higher
    3 主题
  51. Algebraic-Roots-And-Indices Wjec-Eduqas Higher
    1 主题
  52. Introduction-To-Algebra Wjec-Eduqas Higher
    4 主题
  53. Using-A-Calculator Wjec-Eduqas Higher
    1 主题
  54. Surds Wjec-Eduqas Higher
    2 主题
  55. Rounding-Estimation-And-Bounds Wjec-Eduqas Higher
    2 主题
  56. Fractions-Decimals-And-Percentages Wjec-Eduqas Higher
    3 主题
  57. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Higher
    4 主题
  58. Percentages Wjec-Eduqas Higher
    3 主题
  59. Fractions Wjec-Eduqas Higher
    4 主题
  60. Powers-Roots-And-Standard-Form Wjec-Eduqas Higher
    4 主题
  61. Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Higher
    4 主题
  62. Number-Operations Wjec-Eduqas Higher
    10 主题
课 Progress
0% Complete

Exam code:C300

Uses of prime factor decomposition

How can I use PFD to identify a square or cube number?

  • If all the indices in the prime factor decomposition of a number are even, then that number is a square number

    • E.g. The prime factor decomposition of 7056 is 24 × 32 × 72

    • All powers are even so it must be a square number

      • It can be written as (22 × 3 × 7)2

  • If all the indices in the prime factor decomposition of a number are multiples of 3, then that number is a cube number

    • E.g. The prime factor decomposition of 1728000 is 29 × 33 × 53

    • All powers are multiples of 3 so it must be a cube number

      • It can be written as (23 × 3 × 5)3

How can I use PFD to find the square root of a square number?

  • Write the number in its prime factor decomposition

    • All the indices should be even if it is a square number

  • For example, to find the square root of 144 = 24 × 32

    • Halve all of the indices

      • 22 × 3

      • So square root of 2 to the power of 4 cross times 3 squared end root equals 2 squared cross times 3

  • This is the prime factor decomposition of the square root of the number

    • To find it as an integer, multiply the prime factors together

    • 22 × 3 = 12, so the square root of 144 is 12

How can I use PFD to find the exact square root of a number?

  • If the number is not a square number, its exact square root can still be found using its prime factor decomposition

  • Write the number in its prime factor decomposition

    • 1440 equals 2 to the power of 5 cross times 3 squared cross times 5

  • Rewrite the prime factor decomposition with as many even indices as you can

    • E.g. 23 = 22 × 2, or 57 = 56 × 5

    • 1440 equals 2 to the power of 4 cross times 2 cross times 3 squared cross times 5

  • Collect the terms with even powers together

    • 1440 equals 2 to the power of 4 cross times 3 squared cross times 2 cross times 5

    </li

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注