Back to 课程

Maths Gcse Wjec-Eduqas Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Wjec-Eduqas Higher
    4 主题
  3. Histograms Wjec-Eduqas Higher
    3 主题
  4. Statistical-Diagrams- Wjec-Eduqas Higher
    6 主题
  5. Averages-Ranges-And-Data Wjec-Eduqas Higher
    8 主题
  6. Combined-And-Conditional-Probability Wjec-Eduqas Higher
    3 主题
  7. Tree-Diagrams- Wjec-Eduqas Higher
    1 主题
  8. Simple-Probability-Diagrams- Wjec-Eduqas Higher
    3 主题
  9. Introduction-To-Probability Wjec-Eduqas Higher
    3 主题
  10. Transformations Wjec-Eduqas Higher
    5 主题
  11. Vectors Wjec-Eduqas Higher
    6 主题
  12. 3D-Pythagoras-And-Trigonometry Wjec-Eduqas Higher
    1 主题
  13. Sine-Cosine-Rule-And-Area-Of-Triangles- Wjec-Eduqas Higher
    4 主题
  14. Pythagoras-And-Trigonometry Wjec-Eduqas Higher
    4 主题
  15. Area-And-Volume-Of-Similar-Shapes Wjec-Eduqas Higher
    1 主题
  16. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Higher
    5 主题
  17. Volume-And-Surface-Area- Wjec-Eduqas Higher
    3 主题
  18. Circles-Arcs-And-Sectors- Wjec-Eduqas Higher
    2 主题
  19. Area-And-Perimeter- Wjec-Eduqas Higher
    4 主题
  20. Circle-Theorems Wjec-Eduqas Higher
    7 主题
  21. Bearings-Scale-Drawing-Constructions-And-Loci Wjec-Eduqas Higher
    5 主题
  22. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Higher
    3 主题
  23. Symmetry-And-Shapes Wjec-Eduqas Higher
    6 主题
  24. Exchange-Rates-And-Best-Buys Wjec-Eduqas Higher
    2 主题
  25. Standard-And-Compound-Units- Wjec-Eduqas Higher
    5 主题
  26. Direct-And-Inverse-Proportion- Wjec-Eduqas Higher
    2 主题
  27. Problem-Solving-With-Ratios Wjec-Eduqas Higher
    2 主题
  28. Ratios Wjec-Eduqas Higher
    3 主题
  29. Sequences Wjec-Eduqas Higher
    4 主题
  30. Transformations-Of-Graphs- Wjec-Eduqas Higher
    2 主题
  31. Graphing-Inequalities- Wjec-Eduqas Higher
    2 主题
  32. Solving-Inequalities- Wjec-Eduqas Higher
    2 主题
  33. Real-Life-Graphs Wjec-Eduqas Higher
    4 主题
  34. Estimating-Gradients-And-Areas-Under-Graphs Wjec-Eduqas Higher
    2 主题
  35. Equation-Of-A-Circle- Wjec-Eduqas Higher
    2 主题
  36. Graphs-Of-Functions Wjec-Eduqas Higher
    6 主题
  37. Linear-Graphs Wjec-Eduqas Higher
    4 主题
  38. Quadratic-Equations Wjec-Eduqas Higher
    4 主题
  39. Linear-Equations- Wjec-Eduqas Higher
    1 主题
  40. Algebraic-Proof Wjec-Eduqas Higher
    1 主题
  41. Rearranging-Formulae Wjec-Eduqas Higher
    2 主题
  42. Coordinate-Geometry- Wjec-Eduqas Higher
    4 主题
  43. Functions Wjec-Eduqas Higher
    3 主题
  44. Forming-And-Solving-Equations Wjec-Eduqas Higher
    3 主题
  45. Iteration Wjec-Eduqas Higher
    2 主题
  46. Simultaneous-Equations Wjec-Eduqas Higher
    2 主题
  47. Algebraic-Fractions- Wjec-Eduqas Higher
    4 主题
  48. Completing-The-Square Wjec-Eduqas Higher
    1 主题
  49. Factorising Wjec-Eduqas Higher
    6 主题
  50. Expanding-Brackets Wjec-Eduqas Higher
    3 主题
  51. Algebraic-Roots-And-Indices Wjec-Eduqas Higher
    1 主题
  52. Introduction-To-Algebra Wjec-Eduqas Higher
    4 主题
  53. Using-A-Calculator Wjec-Eduqas Higher
    1 主题
  54. Surds Wjec-Eduqas Higher
    2 主题
  55. Rounding-Estimation-And-Bounds Wjec-Eduqas Higher
    2 主题
  56. Fractions-Decimals-And-Percentages Wjec-Eduqas Higher
    3 主题
  57. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Higher
    4 主题
  58. Percentages Wjec-Eduqas Higher
    3 主题
  59. Fractions Wjec-Eduqas Higher
    4 主题
  60. Powers-Roots-And-Standard-Form Wjec-Eduqas Higher
    4 主题
  61. Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Higher
    4 主题
  62. Number-Operations Wjec-Eduqas Higher
    10 主题
课 Progress
0% Complete

Exam code:C300

Angles at centre & circumference

What are circle theorems?

  • Circle Theorems deal with angles that occur when lines are drawn within (and connected to) a circle

  • You may need to use other facts and rules such as:

    • basic properties of lines and angles

    • properties of triangles and quadrilaterals

    • angles in parallel lines or polygons

Parts of a circle

Circle Theorem: The angle at the centre is twice the angle at the circumference

  • In this theorem, the chords (radii) to the centre and the chords to the circumference are both drawn from (subtended by) the ends of the same arc

Circle theorem showing that the angle at the centre of the circle is twice the angle at the circumference.
  • To spot this circle theorem on a diagram

    • find any two radii in the circle and follow them to the circumference

    • see if there are lines from those points going to any other point on the circumference

    • it may look like the shape of an arrowhead

  • When explaining this theorem in an exam you must use the keywords:

    • The angle at the centre is twice the angle at the circumference

  • This theorem is still true when the ‘triangle parts’ overlap

    Triangle overlap, IGCSE & GCSE Maths revision notes
  • It is also true when the lines form a diamond shape

    • You need to compare the reflex angle at the centre with the angle at the circumference

    • Common mistakes are to

      • compare the wrong angles

      • confuse it with a different circle theorem on cyclic quadrilaterals

Diagram showing the circle theorem: Angle at the centre is double the angle at the circumference for a reflex angle.

Examiner Tips and Tricks

  • Questions often say to give “reasons” for your answer

    • Quote an angle fact or circle theorem for every angle you find (not just one for the final answer)

Worked Example

Find the value of x in the diagram below. 

Circle with centre, O, and three points on the circumference, A, B and C. Two triangles are formed, ABO and AOC. Angle ABO = 60 degrees, angle BOC = 150 degrees and angle CAO = x degrees.

Give a reason for each step of your working.

There are three radii in the diagram, AO, BO and CO
Mark these as equal length lines

Notice how they create two isosceles triangles
Base angles in isosceles triangles are equal

Angle OAB = angle OBA = 60º (isosceles triangle)

Circle with centre, O, and three points on the circumference, A, B and C. Two triangles are formed, ABO and AOC. Angle ABO = 60 degrees, angle BOC = 150 degrees and angle CAO = x degrees. Lengths AO, BO and CO are marked with dashes and angle OAB = 60 degrees.

Use the circle theorem:

The angle at the centre is twice the angle at the circumference

Form an equation for <img alt=”x” data-mathml='<math ><semantics><mi >x</mi><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”commentary” height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%2

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注