Maths Gcse Wjec-Eduqas Higher
-
Scatter-Graphs-And-Correlation Wjec-Eduqas Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Wjec-Eduqas Higher4 主题
-
Histograms Wjec-Eduqas Higher3 主题
-
Statistical-Diagrams- Wjec-Eduqas Higher6 主题
-
Averages-Ranges-And-Data Wjec-Eduqas Higher8 主题
-
Questionnaires Wjec-Eduqas Higher
-
Population-And-Sampling Wjec-Eduqas Higher
-
Comparing-Data-Sets Wjec-Eduqas Higher
-
Range-And-Interquartile-Range Wjec-Eduqas Higher
-
Averages-From-Grouped-Data Wjec-Eduqas Higher
-
Averages-From-Tables- Wjec-Eduqas Higher
-
Calculations-With-The-Mean Wjec-Eduqas Higher
-
Mean-Median-And-Mode Wjec-Eduqas Higher
-
Questionnaires Wjec-Eduqas Higher
-
Combined-And-Conditional-Probability Wjec-Eduqas Higher3 主题
-
Tree-Diagrams- Wjec-Eduqas Higher1 主题
-
Simple-Probability-Diagrams- Wjec-Eduqas Higher3 主题
-
Introduction-To-Probability Wjec-Eduqas Higher3 主题
-
Transformations Wjec-Eduqas Higher5 主题
-
Vectors Wjec-Eduqas Higher6 主题
-
3D-Pythagoras-And-Trigonometry Wjec-Eduqas Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles- Wjec-Eduqas Higher4 主题
-
Pythagoras-And-Trigonometry Wjec-Eduqas Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Wjec-Eduqas Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Higher5 主题
-
Volume-And-Surface-Area- Wjec-Eduqas Higher3 主题
-
Circles-Arcs-And-Sectors- Wjec-Eduqas Higher2 主题
-
Area-And-Perimeter- Wjec-Eduqas Higher4 主题
-
Circle-Theorems Wjec-Eduqas Higher7 主题
-
Circle-Theorem-Proofs Wjec-Eduqas Higher
-
The-Alternate-Segment-Theorem Wjec-Eduqas Higher
-
Angles-In-The-Same-Segment Wjec-Eduqas Higher
-
Angles-In-Cyclic-Quadrilaterals Wjec-Eduqas Higher
-
Theorems-With-Chords-And-Tangents Wjec-Eduqas Higher
-
Angle-In-A-Semicircle Wjec-Eduqas Higher
-
Angles-At-Centre-And-Circumference Wjec-Eduqas Higher
-
Circle-Theorem-Proofs Wjec-Eduqas Higher
-
Bearings-Scale-Drawing-Constructions-And-Loci Wjec-Eduqas Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Higher3 主题
-
Symmetry-And-Shapes Wjec-Eduqas Higher6 主题
-
Exchange-Rates-And-Best-Buys Wjec-Eduqas Higher2 主题
-
Standard-And-Compound-Units- Wjec-Eduqas Higher5 主题
-
Direct-And-Inverse-Proportion- Wjec-Eduqas Higher2 主题
-
Problem-Solving-With-Ratios Wjec-Eduqas Higher2 主题
-
Ratios Wjec-Eduqas Higher3 主题
-
Sequences Wjec-Eduqas Higher4 主题
-
Transformations-Of-Graphs- Wjec-Eduqas Higher2 主题
-
Graphing-Inequalities- Wjec-Eduqas Higher2 主题
-
Solving-Inequalities- Wjec-Eduqas Higher2 主题
-
Real-Life-Graphs Wjec-Eduqas Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Wjec-Eduqas Higher2 主题
-
Equation-Of-A-Circle- Wjec-Eduqas Higher2 主题
-
Graphs-Of-Functions Wjec-Eduqas Higher6 主题
-
Linear-Graphs Wjec-Eduqas Higher4 主题
-
Quadratic-Equations Wjec-Eduqas Higher4 主题
-
Linear-Equations- Wjec-Eduqas Higher1 主题
-
Algebraic-Proof Wjec-Eduqas Higher1 主题
-
Rearranging-Formulae Wjec-Eduqas Higher2 主题
-
Coordinate-Geometry- Wjec-Eduqas Higher4 主题
-
Functions Wjec-Eduqas Higher3 主题
-
Forming-And-Solving-Equations Wjec-Eduqas Higher3 主题
-
Iteration Wjec-Eduqas Higher2 主题
-
Simultaneous-Equations Wjec-Eduqas Higher2 主题
-
Algebraic-Fractions- Wjec-Eduqas Higher4 主题
-
Completing-The-Square Wjec-Eduqas Higher1 主题
-
Factorising Wjec-Eduqas Higher6 主题
-
Expanding-Brackets Wjec-Eduqas Higher3 主题
-
Algebraic-Roots-And-Indices Wjec-Eduqas Higher1 主题
-
Introduction-To-Algebra Wjec-Eduqas Higher4 主题
-
Using-A-Calculator Wjec-Eduqas Higher1 主题
-
Surds Wjec-Eduqas Higher2 主题
-
Rounding-Estimation-And-Bounds Wjec-Eduqas Higher2 主题
-
Fractions-Decimals-And-Percentages Wjec-Eduqas Higher3 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Higher4 主题
-
Percentages Wjec-Eduqas Higher3 主题
-
Fractions Wjec-Eduqas Higher4 主题
-
Powers-Roots-And-Standard-Form Wjec-Eduqas Higher4 主题
-
Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Higher4 主题
-
Number-Operations Wjec-Eduqas Higher10 主题
-
Product-Rule-For-Counting Wjec-Eduqas Higher
-
Systematic-Lists Wjec-Eduqas Higher
-
Related-Calculations- Wjec-Eduqas Higher
-
Multiplication-And-Division Wjec-Eduqas Higher
-
Addition-And-Subtraction Wjec-Eduqas Higher
-
Money-Calculations- Wjec-Eduqas Higher
-
Negative-Numbers- Wjec-Eduqas Higher
-
Irrational-Numbers Wjec-Eduqas Higher
-
Order-Of-Operations-Bidmasbodmas Wjec-Eduqas Higher
-
Mathematical-Symbols Wjec-Eduqas Higher
-
Product-Rule-For-Counting Wjec-Eduqas Higher
Mean-Median-And-Mode Wjec-Eduqas Higher
Exam code:C300
Mean, median & mode
What is the mode?
-
The mode is the value that appears the most often
-
The mode of 1, 2, 2, 5, 6 is 2
-
-
There can be more than one mode
-
The modes of 1, 2, 2, 5, 5, 6 are 2 and 5
-
-
The mode can also be called the modal value
What is the median?
-
The median is the middle value when you put values in size order
-
The median of 4, 2, 3 can be found by
-
ordering the numbers: 2, 3, 4
-
and choosing the middle value, 3
-
-
-
If you have an even number of values, find the midpoint of the middle two values
-
The median of 1, 2, 3, 4 is 2.5
-
2.5 is the midpoint of 2 and 3
-
-
The midpoint is the sum of the two middle values divided by 2
-
What is the mean?
-
The mean is the sum of the values divided by the number of values
-
The mean of 1, 2, 6 is (1 + 2 + 6) ÷ 3 = 3
-
-
The mean can be fraction or a decimal
-
It may need rounding
-
You do not need to force it to be a whole number
-
You can have a mean of 7.5 people, for example!
-
-
How do I know when to use the mode, median or mean?
-
The mode, median and mean are different ways to measure an average
-
In certain situations it is better to use one average over another
-
For example:
-
If the data has extreme values (outliers) like 1, 1, 4, 50
The mode is 1
The median is 2.5
The mean is 14-
Don’t use the mean (it’s badly affected by extreme values)
-
-
If the data has more than one mode
-
Don’t use the mode as it is not clear
-
-
If the data is non-numerical, like dog, cat, cat, fish
-
You can only use the mode
-
-
Worked Example
15 students were timed to see how long it took them to solve a mathematical problem. Their times, in seconds, are given below.
|
12 |
10 |
15 |
14 |
17 |
|
11 |
12 |
13 |
9 |
21 |
|
14 |
20 |
19 |
16 |
23 |
(a) Find the mean time, giving your answer to 3 significant figures.
Add up all the numbers (you can add the rows if it helps)
12 + 10 + 15 + 14 + 17 = 68
11 + 12 + 13 + 9 + 21 = 66
14 + 20 + 19 + 16 + 23 = 92
Total = 68 + 66 + 92 = 226
Divide the total by the number of values (there are 15 values)
Write the mean to 3 significant figures
Remember to include the units
The mean time is 15.1 seconds (to 3 s.f.)
(b) Find the median time.
Write the times in order and find the middle value
<img alt=”up diagonal strike 9 space space space space up diagonal strike 10 space space space space up diagonal strike 11 space space space space up diagonal strike 12 space space space space up diagonal strike 12 space space space space up diagonal strike 13 space space space space up diagonal strike 14 space space space space circle enclose 14 space space space space up diagonal strike 15 space space space space up diagonal strike 16 space space space space up diagonal strike 17 space space space space up diagonal strike 19 space space space space up diagonal strike 20 space space space space up diagonal strike 21 space space space space up diagonal strike 23″ data-mathml='<math ><semantics><mrow><menclose notation=”updiagonalstrike”><mn>9</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>10</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>11</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>12</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>12</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>13</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>14</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”circle”><mn>14</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>15</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>16</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>17</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>19</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>20</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>21</mn></menclose><mo > </mo><mo > </mo><mo > </mo><mo > </mo><menclose notation=”updiagonalstrike”><mn>23</mn></menclose></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”32″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2232%22%20width%3D%22494%22%20wrs%3Abaseline%3D%2221%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E9%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E10%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E11%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E12%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E12%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E13%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E14%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22circle%22%3E%3Cmn%3E14%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E15%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E16%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E17%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E19%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E20%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E21%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22updiagonalstrike%22%3E%3Cmn%3E23%3C%2Fmn%3E%3C%2Fmenclose%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3Etext%7Bfill%3A%23000000%3B%7D%3C%2Fstyle%3E%3C%2Fdefs%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%220.5%22%20×2%3D%228.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%224.5%22%20y%3D%2221%22%3E9%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2225.5%22%20×2%3D%2242.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2234.5%22%20y%3D%2221%22%3E10%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2259.5%22%20×2%3D%2276.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%2268.5%22%20y%3D%2221%22%3E11%3C%2Ftext%3E%3Cline%20stroke%3D%22%23000000%22%20stroke-linecap%3D%22square%22%20stroke-width%3D%221%22%20×1%3D%2293.5%22%20×2%3D%22110.5%22%20y1%3D%2225.5%22%20y2%3D%225.5%22%2F%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%20x%3D%22102.5%22%20y%3D%2221%22%3E12%3C%2Ftext%3E%3
Responses