Maths Gcse Wjec-Eduqas Foundation
-
Scatter-Graphs-And-Correlation Wjec-Eduqas Foundation2 主题
-
Statistical-Diagrams- Wjec-Eduqas Foundation7 主题
-
Comparing-Statistical-Diagrams Wjec-Eduqas Foundation
-
Reading-And-Interpreting-Statistical-Diagrams Wjec-Eduqas Foundation
-
Time-Series-Graphs- Wjec-Eduqas Foundation
-
Pie-Charts- Wjec-Eduqas Foundation
-
Frequency-Polygons Wjec-Eduqas Foundation
-
Bar-Charts-And-Pictograms- Wjec-Eduqas Foundation
-
Tally-Charts-And-Frequency-Tables Wjec-Eduqas Foundation
-
Comparing-Statistical-Diagrams Wjec-Eduqas Foundation
-
Statistics-Toolkit Wjec-Eduqas Foundation8 主题
-
Questionnaires Wjec-Eduqas Foundation
-
Population-And-Sampling Wjec-Eduqas Foundation
-
Comparing-Data-Sets- Wjec-Eduqas Foundation
-
Range Wjec-Eduqas Foundation
-
Averages-From-Grouped-Data Wjec-Eduqas Foundation
-
Averages-From-Tables- Wjec-Eduqas Foundation
-
Calculations-With-The-Mean Wjec-Eduqas Foundation
-
Mean-Median-And-Mode Wjec-Eduqas Foundation
-
Questionnaires Wjec-Eduqas Foundation
-
Tree-Diagrams-And-Combined-Probability Wjec-Eduqas Foundation2 主题
-
Simple-Probability-Diagrams- Wjec-Eduqas Foundation4 主题
-
Probability-Toolkit Wjec-Eduqas Foundation3 主题
-
Transformations Wjec-Eduqas Foundation4 主题
-
Vectors Wjec-Eduqas Foundation3 主题
-
Pythagoras-And-Trigonometry Wjec-Eduqas Foundation5 主题
-
Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Foundation5 主题
-
Volume-And-Surface-Area- Wjec-Eduqas Foundation3 主题
-
Circles-Arcs-And-Sectors Wjec-Eduqas Foundation3 主题
-
Area-And-Perimeter Wjec-Eduqas Foundation4 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci- Wjec-Eduqas Foundation5 主题
-
2D-And-3D-Shapes Wjec-Eduqas Foundation4 主题
-
Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Foundation5 主题
-
Geometry-Toolkit Wjec-Eduqas Foundation4 主题
-
Exchange-Rates-And-Best-Buys Wjec-Eduqas Foundation2 主题
-
Standard-And-Compound-Units- Wjec-Eduqas Foundation5 主题
-
Direct-And-Inverse-Proportion- Wjec-Eduqas Foundation1 主题
-
Ratio-Problem-Solving- Wjec-Eduqas Foundation2 主题
-
Ratio-Toolkit Wjec-Eduqas Foundation3 主题
-
Sequences Wjec-Eduqas Foundation4 主题
-
Solving-Inequalities- Wjec-Eduqas Foundation3 主题
-
Real-Life-Graphs Wjec-Eduqas Foundation4 主题
-
Graphs-Of-Functions Wjec-Eduqas Foundation3 主题
-
Linear-Graphs Wjec-Eduqas Foundation3 主题
-
Coordinate-Geometry Wjec-Eduqas Foundation3 主题
-
Functions Wjec-Eduqas Foundation1 主题
-
Forming-And-Solving-Equations Wjec-Eduqas Foundation2 主题
-
Simultaneous-Equations Wjec-Eduqas Foundation1 主题
-
Solving-Quadratic-Equations- Wjec-Eduqas Foundation1 主题
-
Linear-Equations Wjec-Eduqas Foundation3 主题
-
Algebraic-Reasoning Wjec-Eduqas Foundation1 主题
-
Rearranging-Formulae Wjec-Eduqas Foundation1 主题
-
Factorising Wjec-Eduqas Foundation3 主题
-
Expanding-Brackets Wjec-Eduqas Foundation2 主题
-
Algebraic-Roots-And-Indices Wjec-Eduqas Foundation1 主题
-
Algebra-Toolkit Wjec-Eduqas Foundation4 主题
-
Using-A-Calculator Wjec-Eduqas Foundation1 主题
-
Exact-Values Wjec-Eduqas Foundation1 主题
-
Rounding-Estimation-And-Error-Intervals Wjec-Eduqas Foundation4 主题
-
Fractions-Decimals-And-Percentages Wjec-Eduqas Foundation2 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Foundation4 主题
-
Percentages Wjec-Eduqas Foundation5 主题
-
Fractions Wjec-Eduqas Foundation6 主题
-
Multiplying-And-Dividing-Fractions Wjec-Eduqas Foundation
-
Adding-And-Subtracting-Fractions- Wjec-Eduqas Foundation
-
Mixed-Numbers-And-Improper-Fractions Wjec-Eduqas Foundation
-
Equivalent-And-Simplified-Fractions Wjec-Eduqas Foundation
-
Fractions-Of-Amounts Wjec-Eduqas Foundation
-
Introduction-To-Fractions Wjec-Eduqas Foundation
-
Multiplying-And-Dividing-Fractions Wjec-Eduqas Foundation
-
Powers-Roots-And-Standard-Form Wjec-Eduqas Foundation4 主题
-
Types-Of-Number-Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Foundation6 主题
-
Number-Toolkit Wjec-Eduqas Foundation9 主题
-
Counting-Principles Wjec-Eduqas Foundation
-
Related-Calculations- Wjec-Eduqas Foundation
-
Multiplication-And-Division Wjec-Eduqas Foundation
-
Addition-And-Subtraction Wjec-Eduqas Foundation
-
Money-Calculations- Wjec-Eduqas Foundation
-
Negative-Numbers- Wjec-Eduqas Foundation
-
Place-Value Wjec-Eduqas Foundation
-
Order-Of-Operations-Bidmasbodmas Wjec-Eduqas Foundation
-
Mathematical-Operations Wjec-Eduqas Foundation
-
Counting-Principles Wjec-Eduqas Foundation
Rotations Wjec-Eduqas Foundation
Exam code:C300
Rotations
What is a rotation?
-
A rotation turns a shape around a point
-
This is called the centre of rotation
-
-
The rotated image is the same size as the original image
-
It will have a new position and orientation
-
-
If the centre is a point on the original shape then that point is not changed by the rotation
-
It is called an invariant point
-

How do I rotate a shape?
-
STEP 1
Place the tracing paper over page and draw over the original object
-
STEP 2
Place the point of your pencil on the centre of rotation
-
STEP 3
Rotate the tracing paper by the given angle in the given direction
-
The angle will be 90°, 180° or 270°
-
-
STEP 4
Carefully draw the image onto the coordinate grid in the position shown by the tracing paper
How do I describe a rotation?
-
To describe a rotation, you must:
-
State that the transformation is a rotation
-
State the centre of rotation
-
State the angle of rotation
-
This will be 90°, 180° or 270°
-
-
State the direction of rotation
-
Clockwise or anti-clockwise
-
A direction is not required if the angle is 180°
-
90° clockwise is the same as 270° anti-clockwise
-
-
-
To find the centre of rotation:
-
If the rotation is 90° or 270°
-
Use tracing paper and start on the original shape
-
Try a point as the centre and rotate the original shape
-
If the rotated shape matches the image then that point is the centre
-
Otherwise keep picking points until one works
-
-
If the rotation is 180°
-
Draw lines connecting each vertex on the original shape with the corresponding vertices on the image
-
These lines will intersect at the centre of rotation
-
-
How do I reverse a rotation?
-
If a shape has been rotated to a new position, you can perform a single transformation to return the shape to its original position
-
A rotation can be reversed by simply reversing the direction of rotation
-
The angle of rotation is the same
-
The centre of rotation is the same
-
-
For a shape rotated by 45º in a clockwise direction about the point (0, 3)
-
The reverse transformation is
-
a rotation of 45º
-
in an anti-clockwise direction
-
about the point (0, 3)
-
-
Examiner Tips and Tricks
-
When you first go into the exam room, make sure there is some tracing paper on your desk ready for you
-
If there isn’t ask for some before the exam begins
-
-
Draw an arrow facing up on your tracing paper
-
The arrow will be facing left or right when you have turned 90° or 270°
-
The arrow will be facing down when you have turned 180°
-
-
Double-check that you have copied the rotated image into the correct position
-
Put the tracing paper over the original object and rotate it again to see that it lines up with your image
-
Worked Example
(a) On the grid below rotate shape A by 90° anti-clockwise about the point (0, 2).
Label your answer A’.

Using tracing paper, draw over the original object and mark one vertex.
Mark on the centre of rotation.
Draw an arrow pointing vertically upwards on the paper.

With your pencil fixed on the point of rotation, rotate the tracing paper 90o anti-clockwise, the arrow that you drew should now be pointing left.
Make a mental note of the new coordinates of the vertex that you marked on your tracing paper.
Draw the new position of this vertex onto the grid.

Repeat this process for the other two vertices on the triangle.
Connect the vertices together to draw the rotated image.

(b) Describe fully the single transformation that creates shape B from shape A.

You should be able to see that the object has been rotated 90o clockwise (or 270o anti-clockwise).
You are likely to be able to see roughly where the centre of rotation is but it may take a little time to find its position exactly.
Responses