Back to 课程

Maths Gcse Wjec-Eduqas Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Foundation
    2 主题
  2. Statistical-Diagrams- Wjec-Eduqas Foundation
    7 主题
  3. Statistics-Toolkit Wjec-Eduqas Foundation
    8 主题
  4. Tree-Diagrams-And-Combined-Probability Wjec-Eduqas Foundation
    2 主题
  5. Simple-Probability-Diagrams- Wjec-Eduqas Foundation
    4 主题
  6. Probability-Toolkit Wjec-Eduqas Foundation
    3 主题
  7. Transformations Wjec-Eduqas Foundation
    4 主题
  8. Vectors Wjec-Eduqas Foundation
    3 主题
  9. Pythagoras-And-Trigonometry Wjec-Eduqas Foundation
    5 主题
  10. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Foundation
    5 主题
  11. Volume-And-Surface-Area- Wjec-Eduqas Foundation
    3 主题
  12. Circles-Arcs-And-Sectors Wjec-Eduqas Foundation
    3 主题
  13. Area-And-Perimeter Wjec-Eduqas Foundation
    4 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci- Wjec-Eduqas Foundation
    5 主题
  15. 2D-And-3D-Shapes Wjec-Eduqas Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Foundation
    5 主题
  17. Geometry-Toolkit Wjec-Eduqas Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Wjec-Eduqas Foundation
    2 主题
  19. Standard-And-Compound-Units- Wjec-Eduqas Foundation
    5 主题
  20. Direct-And-Inverse-Proportion- Wjec-Eduqas Foundation
    1 主题
  21. Ratio-Problem-Solving- Wjec-Eduqas Foundation
    2 主题
  22. Ratio-Toolkit Wjec-Eduqas Foundation
    3 主题
  23. Sequences Wjec-Eduqas Foundation
    4 主题
  24. Solving-Inequalities- Wjec-Eduqas Foundation
    3 主题
  25. Real-Life-Graphs Wjec-Eduqas Foundation
    4 主题
  26. Graphs-Of-Functions Wjec-Eduqas Foundation
    3 主题
  27. Linear-Graphs Wjec-Eduqas Foundation
    3 主题
  28. Coordinate-Geometry Wjec-Eduqas Foundation
    3 主题
  29. Functions Wjec-Eduqas Foundation
    1 主题
  30. Forming-And-Solving-Equations Wjec-Eduqas Foundation
    2 主题
  31. Simultaneous-Equations Wjec-Eduqas Foundation
    1 主题
  32. Solving-Quadratic-Equations- Wjec-Eduqas Foundation
    1 主题
  33. Linear-Equations Wjec-Eduqas Foundation
    3 主题
  34. Algebraic-Reasoning Wjec-Eduqas Foundation
    1 主题
  35. Rearranging-Formulae Wjec-Eduqas Foundation
    1 主题
  36. Factorising Wjec-Eduqas Foundation
    3 主题
  37. Expanding-Brackets Wjec-Eduqas Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Wjec-Eduqas Foundation
    1 主题
  39. Algebra-Toolkit Wjec-Eduqas Foundation
    4 主题
  40. Using-A-Calculator Wjec-Eduqas Foundation
    1 主题
  41. Exact-Values Wjec-Eduqas Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Wjec-Eduqas Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Wjec-Eduqas Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Foundation
    4 主题
  45. Percentages Wjec-Eduqas Foundation
    5 主题
  46. Fractions Wjec-Eduqas Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Wjec-Eduqas Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Foundation
    6 主题
  49. Number-Toolkit Wjec-Eduqas Foundation
    9 主题
课 Progress
0% Complete

Exam code:C300

Compound interest

What is compound interest?

  • Compound interest is where interest is calculated on the running total, not just the starting amount

    • This is different from simple interest where interest is only based on the starting amount

  • e.g. £ 100 earns 10% interest each year, for 3 years

    • At the end of year 1, 10% of £ 100 is earned

      • The total balance will now be 100+10 = £ 110

    • At the end of year 2, 10% of £ 110 is earned

      • The balance will now be 110+11 = £ 121

    • At the end of year 3, 10% of £ 121 is earned

      • The balance will now be 121+12.1 = £ 133.10

How do I calculate compound interest?

  • Compound interest increases an amount by a percentage, and then increases the new amount by the same percentage

    • This process repeats each time period (yearly or monthly etc)

  • We can use a multiplier to carry out the percentage increase multiple times

    • To increase £ 300 by 5% once, we would find 300×1.05

    • To increase £ 300 by 5%, each year for 2 years, we would find (300×1.05)×1.05

      • This could be rewritten as 300×1.052

    • To increase £ 300 by 5%, each year for 3 years, we would find ((300×1.05)×1.05)×1.05

      • This could be rewritten as 300×1.053

  • This can be extended to any number of periods that the interest is applied for 

    • If £ 2000 is subject to 4% compound interest each year for 12 years

    • Find 2000×1.0412, which is £ 3202.06

  • Note that this method calculates the total balance at the end of the period, not the interest earned

How do I calculate depreciation?

  • A similar method can be used if something decreases in value by a percentage every year (e.g. a car)

  • This is known as depreciation 

  • Change the multiplier to one which represents a percentage decrease

    • e.g. a decrease of 15% would be a multiplier of 0.85

  • If a car worth £ 16 000 depreciates by 15% each year for 6 years

    • Its value will be 16 000 × 0.856, which is £ 6034.39

Compound interest formula

  • An alternative method is to use the following formula to calculate the final balance

    • Final balance = P open parentheses 1 plus r over 100 close parentheses to the power of n space end exponent where

      • P is the original amount,

      • r is the % increase,

      • and n is the number of years

    • Note that 1 plus r over 100 is the same value as the multiplier

      • e.g. 1.15 for 15% interest

  • This formula is not given in the exam

Examiner Tips and Tricks

  • Double check if the question uses simple interest or compound interest

  • The formula for compound interest is not given in the exam

Worked Example

Jasmina invests £ 1200 in a savings account which pays compound interest at the rate of 4% per year for 7 years.

To the nearest dollar, what is her investment worth at the end of the 7 years?

We want an increase of 4% per year, this is equivalent to a multiplier of 1.04, or 104% of the original amount

This multiplier is applied 7 times; <img alt=”cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 space equals space 1.04 to the power of 7″ data-mathml='<math ><semantics><mrow><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#160;</mo><mo >=</mo><mo >&#160;</mo><mn >1</mn><mo >.</mo><msup><mn >04</mn><mn >7</mn></msup></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”commentary” height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22408%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmsup%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E7%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1e9dd7d3164786ed04b1d189388’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAERjdnQgDVUNBwAAAWAAAAA6Z2x5ZoPi2VsAAAGcAAABZ2hlYWQQC2qxAAADBAAAADZoaGVhCGsXSAAAAzwAAAAkaG10eE2rRkcAAANgAAAAEGxvY2EAHTwYAAADcAAAABRtYXhwBT0FPgAAA4QAAAAgbmFtZaBxlY4AAAOkAAABn3Bvc3QB9wD6AAAFRAAAACBwcmVwa1uragAABWQAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEA

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注