Back to 课程

Maths Gcse Wjec-Eduqas Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Foundation
    2 主题
  2. Statistical-Diagrams- Wjec-Eduqas Foundation
    7 主题
  3. Statistics-Toolkit Wjec-Eduqas Foundation
    8 主题
  4. Tree-Diagrams-And-Combined-Probability Wjec-Eduqas Foundation
    2 主题
  5. Simple-Probability-Diagrams- Wjec-Eduqas Foundation
    4 主题
  6. Probability-Toolkit Wjec-Eduqas Foundation
    3 主题
  7. Transformations Wjec-Eduqas Foundation
    4 主题
  8. Vectors Wjec-Eduqas Foundation
    3 主题
  9. Pythagoras-And-Trigonometry Wjec-Eduqas Foundation
    5 主题
  10. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Foundation
    5 主题
  11. Volume-And-Surface-Area- Wjec-Eduqas Foundation
    3 主题
  12. Circles-Arcs-And-Sectors Wjec-Eduqas Foundation
    3 主题
  13. Area-And-Perimeter Wjec-Eduqas Foundation
    4 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci- Wjec-Eduqas Foundation
    5 主题
  15. 2D-And-3D-Shapes Wjec-Eduqas Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Foundation
    5 主题
  17. Geometry-Toolkit Wjec-Eduqas Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Wjec-Eduqas Foundation
    2 主题
  19. Standard-And-Compound-Units- Wjec-Eduqas Foundation
    5 主题
  20. Direct-And-Inverse-Proportion- Wjec-Eduqas Foundation
    1 主题
  21. Ratio-Problem-Solving- Wjec-Eduqas Foundation
    2 主题
  22. Ratio-Toolkit Wjec-Eduqas Foundation
    3 主题
  23. Sequences Wjec-Eduqas Foundation
    4 主题
  24. Solving-Inequalities- Wjec-Eduqas Foundation
    3 主题
  25. Real-Life-Graphs Wjec-Eduqas Foundation
    4 主题
  26. Graphs-Of-Functions Wjec-Eduqas Foundation
    3 主题
  27. Linear-Graphs Wjec-Eduqas Foundation
    3 主题
  28. Coordinate-Geometry Wjec-Eduqas Foundation
    3 主题
  29. Functions Wjec-Eduqas Foundation
    1 主题
  30. Forming-And-Solving-Equations Wjec-Eduqas Foundation
    2 主题
  31. Simultaneous-Equations Wjec-Eduqas Foundation
    1 主题
  32. Solving-Quadratic-Equations- Wjec-Eduqas Foundation
    1 主题
  33. Linear-Equations Wjec-Eduqas Foundation
    3 主题
  34. Algebraic-Reasoning Wjec-Eduqas Foundation
    1 主题
  35. Rearranging-Formulae Wjec-Eduqas Foundation
    1 主题
  36. Factorising Wjec-Eduqas Foundation
    3 主题
  37. Expanding-Brackets Wjec-Eduqas Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Wjec-Eduqas Foundation
    1 主题
  39. Algebra-Toolkit Wjec-Eduqas Foundation
    4 主题
  40. Using-A-Calculator Wjec-Eduqas Foundation
    1 主题
  41. Exact-Values Wjec-Eduqas Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Wjec-Eduqas Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Wjec-Eduqas Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Foundation
    4 主题
  45. Percentages Wjec-Eduqas Foundation
    5 主题
  46. Fractions Wjec-Eduqas Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Wjec-Eduqas Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Foundation
    6 主题
  49. Number-Toolkit Wjec-Eduqas Foundation
    9 主题
课 Progress
0% Complete

Exam code:C300

Basic probability

What is probability?

  • Probability describes the likelihood of something happening

    • In real-life you might use words such as impossible, unlikely and certain

  • In maths we use the probability scale to describe probability

    • This means giving it a number between 0 and 1

      • 0 means impossible

      • Between 0 and 0.5 means unlikely

      • 0.5 means even chance

      • Between 0.5 and 1 means likely

      • 1 means certain

  • Probabilities can be given as fractions, decimals or percentages

The probability scale goes from 0 to 1

What key words and terminology are used in probability?

  • An experiment is an activity that is repeated to produce a set of results

    • Results can be observed (seen) or recorded

    • Each repeat is called a trial

  • An outcome is a possible result of a trial

  • An event is an outcome (or a collection of outcomes)

    • For example:

      • a dice lands on a six

      • a dice lands on an even number

    • Events are usually given capital letters

    • n(A) is the number of possible outcomes from event A

      • A = a dice lands on an even number (2, 4 or 6)

      • n(A) = 3 

  • A sample space is the set of all possible outcomes of an experiment

    • It can be represented as a list or a table

  • The probability of event A is written P(A)

  • An event is said to be fair if there is an equal chance of achieving each outcome

    • If there is not an equal chance, the event is biased

    • For example, a fair coin has an equal chance of landing on heads or tails

How do I calculate basic probabilities?

  • If all outcomes are equally likely then the probability for each outcome is the same

    • The probability for each outcome is fraction numerator 1 over denominator Total space number space of space outcomes end fraction

      • If there are 50 marbles in a bag then the probability of selecting a specific one is 1 over 50

  • The theoretical probability of an event can be calculated by dividing the number of outcomes of that event by the total number of outcomes

    • straight P left parenthesis A right parenthesis equals fraction numerator Total space number space of space outcomes space for space the space event over denominator Total space number space of space outcomes end fraction 

    • This can be calculated without actually doing the experiment 

  • If there are 50 marbles in a bag and 20 are blue, then the probability of selecting a blue marble is 20 over 50

How do I find missing probabilities?

  • The probabilities of all the outcomes add up to 1

    • If you have a table of probabilities with one missing, find it by making them all add up to 1 

  • The complement of event A is the event where A does not happen

    • This can be thought of as not A

    • P(event does not happen) = 1 – P(event does happen)

      • For example, if the probability of rain is 0.3, then the probability of not rain is 1 – 0.3 = 0.7

What are mutually exclusive events?

  • Two events are mutually exclusive if they cannot both happen at once

    • When rolling a dice, the events “getting a prime number” and “getting a 6” are mutually exclusive

  • If A and B are mutually exclusive events, then the probability of either A or B happening is P(A) + P(B)

  • Complementary events are mutually exclusive

Examiner Tips and Tricks

  • If you are not told in the question how to leave your answer, then fractions are best for probabilities.

Worked Example

Emilia is using a spinner that has outcomes and probabilities as shown in the table.

<th class=”b

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注