Back to 课程

Maths Gcse Wjec-Eduqas Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Wjec-Eduqas Foundation
    2 主题
  2. Statistical-Diagrams- Wjec-Eduqas Foundation
    7 主题
  3. Statistics-Toolkit Wjec-Eduqas Foundation
    8 主题
  4. Tree-Diagrams-And-Combined-Probability Wjec-Eduqas Foundation
    2 主题
  5. Simple-Probability-Diagrams- Wjec-Eduqas Foundation
    4 主题
  6. Probability-Toolkit Wjec-Eduqas Foundation
    3 主题
  7. Transformations Wjec-Eduqas Foundation
    4 主题
  8. Vectors Wjec-Eduqas Foundation
    3 主题
  9. Pythagoras-And-Trigonometry Wjec-Eduqas Foundation
    5 主题
  10. Congruence-Similarity-And-Geometrical-Proof Wjec-Eduqas Foundation
    5 主题
  11. Volume-And-Surface-Area- Wjec-Eduqas Foundation
    3 主题
  12. Circles-Arcs-And-Sectors Wjec-Eduqas Foundation
    3 主题
  13. Area-And-Perimeter Wjec-Eduqas Foundation
    4 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci- Wjec-Eduqas Foundation
    5 主题
  15. 2D-And-3D-Shapes Wjec-Eduqas Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Wjec-Eduqas Foundation
    5 主题
  17. Geometry-Toolkit Wjec-Eduqas Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Wjec-Eduqas Foundation
    2 主题
  19. Standard-And-Compound-Units- Wjec-Eduqas Foundation
    5 主题
  20. Direct-And-Inverse-Proportion- Wjec-Eduqas Foundation
    1 主题
  21. Ratio-Problem-Solving- Wjec-Eduqas Foundation
    2 主题
  22. Ratio-Toolkit Wjec-Eduqas Foundation
    3 主题
  23. Sequences Wjec-Eduqas Foundation
    4 主题
  24. Solving-Inequalities- Wjec-Eduqas Foundation
    3 主题
  25. Real-Life-Graphs Wjec-Eduqas Foundation
    4 主题
  26. Graphs-Of-Functions Wjec-Eduqas Foundation
    3 主题
  27. Linear-Graphs Wjec-Eduqas Foundation
    3 主题
  28. Coordinate-Geometry Wjec-Eduqas Foundation
    3 主题
  29. Functions Wjec-Eduqas Foundation
    1 主题
  30. Forming-And-Solving-Equations Wjec-Eduqas Foundation
    2 主题
  31. Simultaneous-Equations Wjec-Eduqas Foundation
    1 主题
  32. Solving-Quadratic-Equations- Wjec-Eduqas Foundation
    1 主题
  33. Linear-Equations Wjec-Eduqas Foundation
    3 主题
  34. Algebraic-Reasoning Wjec-Eduqas Foundation
    1 主题
  35. Rearranging-Formulae Wjec-Eduqas Foundation
    1 主题
  36. Factorising Wjec-Eduqas Foundation
    3 主题
  37. Expanding-Brackets Wjec-Eduqas Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Wjec-Eduqas Foundation
    1 主题
  39. Algebra-Toolkit Wjec-Eduqas Foundation
    4 主题
  40. Using-A-Calculator Wjec-Eduqas Foundation
    1 主题
  41. Exact-Values Wjec-Eduqas Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Wjec-Eduqas Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Wjec-Eduqas Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Wjec-Eduqas Foundation
    4 主题
  45. Percentages Wjec-Eduqas Foundation
    5 主题
  46. Fractions Wjec-Eduqas Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Wjec-Eduqas Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm- Wjec-Eduqas Foundation
    6 主题
  49. Number-Toolkit Wjec-Eduqas Foundation
    9 主题
课 Progress
0% Complete

Exam code:C300

Rotational symmetry

What is the order of rotational symmetry?

  • Rotational symmetry refers to the number of times a shape looks the same as it is rotated 360° about its centre

  • This number is called the order of rotational symmetry

  • Tracing paper can help work out the order of rotational symmetry

    • Draw an arrow on the tracing paper so you can easily tell when you have turned it through 360°

finding the order of rotational symmetry using tracing paper
finding the order of rotational symmetry using tracing paper 2
finding the order of rotational symmetry using tracing paper 3
  • Notice that returning to the original shape contributes 1 to the order

    • This means a shape can never have order 0

    • A shape with rotational symmetry order 1 may be described as not having any rotational symmetry

    • The only time it looks the same is when you get back to the start

Examiner Tips and Tricks

Remember to use the trick above; using an upwards arrow on the tracing paper to show the starting orientation of the shape.

Worked Example

For the shape below, shade exactly 4 more squares so that the shape has rotational symmetry of order 4.

3-1-line-and-rotation-symmetry-we

The shape below appears the same 4 times if rotated through 360 degrees

3-1-1-rotation-symmetry-we-answer

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注