Back to 课程

Maths Gcse Edexcel Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Edexcel Higher
    4 主题
  3. Histograms Edexcel Higher
    3 主题
  4. Statistical-Diagrams Edexcel Higher
    7 主题
  5. Averages-Ranges-And-Data Edexcel Higher
    8 主题
  6. Combined-And-Conditional-Probability Edexcel Higher
    3 主题
  7. Tree-Diagrams Edexcel Higher
    1 主题
  8. Simple-Probability-Diagrams Edexcel Higher
    3 主题
  9. Transformations Edexcel Higher
    5 主题
  10. Vectors Edexcel Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Edexcel Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Edexcel Higher
    4 主题
  13. Pythagoras-And-Trigonometry Edexcel Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Edexcel Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Edexcel Higher
    5 主题
  16. Volume-And-Surface-Area Edexcel Higher
    3 主题
  17. Circles-Arcs-And-Sectors Edexcel Higher
    2 主题
  18. Area-And-Perimeter Edexcel Higher
    4 主题
  19. Circle-Theorems Edexcel Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Edexcel Higher
    3 主题
  22. Symmetry-And-Shapes Edexcel Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Edexcel Higher
    2 主题
  24. Standard-And-Compound-Units Edexcel Higher
    5 主题
  25. Direct-And-Inverse-Proportion Edexcel Higher
    2 主题
  26. Problem-Solving-With-Ratios Edexcel Higher
    2 主题
  27. Ratios Edexcel Higher
    3 主题
  28. Sequences Edexcel Higher
    4 主题
  29. Transformations-Of-Graphs Edexcel Higher
    2 主题
  30. Graphing-Inequalities Edexcel Higher
    2 主题
  31. Solving-Inequalities Edexcel Higher
    2 主题
  32. Real-Life-Graphs Edexcel Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Edexcel Higher
    2 主题
  34. Equation-Of-A-Circle Edexcel Higher
    2 主题
  35. Graphs-Of-Functions Edexcel Higher
    6 主题
  36. Linear-Graphs Edexcel Higher
    4 主题
  37. Coordinate-Geometry Edexcel Higher
    4 主题
  38. Functions Edexcel Higher
    3 主题
  39. Forming-And-Solving-Equations Edexcel Higher
    3 主题
  40. Iteration Edexcel Higher
    1 主题
  41. Simultaneous-Equations Edexcel Higher
    2 主题
  42. Quadratic-Equations Edexcel Higher
    4 主题
  43. Linear-Equations Edexcel Higher
    1 主题
  44. Algebraic-Proof Edexcel Higher
    1 主题
  45. Rearranging-Formulas Edexcel Higher
    2 主题
  46. Algebraic-Fractions Edexcel Higher
    4 主题
  47. Completing-The-Square Edexcel Higher
    1 主题
  48. Factorising Edexcel Higher
    6 主题
  49. Expanding-Brackets Edexcel Higher
    3 主题
  50. Algebraic-Roots-And-Indices Edexcel Higher
    1 主题
  51. Introduction Edexcel Higher
    7 主题
  52. Using-A-Calculator Edexcel Higher
    1 主题
  53. Surds Edexcel Higher
    2 主题
  54. Rounding-Estimation-And-Bounds Edexcel Higher
    2 主题
  55. Fractions-Decimals-And-Percentages Edexcel Higher
    3 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Higher
    4 主题
  57. Percentages Edexcel Higher
    3 主题
  58. Fractions Edexcel Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Edexcel Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Edexcel Higher
    4 主题
  61. Number-Operations Edexcel Higher
    10 主题
课 Progress
0% Complete

Exam code:1MA1

Planes of symmetry

What is a plane of symmetry?

  • A plane is a flat surface that can be any 2D shape

  • A plane of symmetry is a plane that splits a 3D shape into two congruent (identical) halves

  • If a 3D shape has a plane of symmetry, it has reflection symmetry

    • The two congruent halves are identical, mirror images of each other

  • All prisms have at least one plane of symmetry

    • Cubes have 9 planes of symmetry

    • Cuboids have 3 planes of symmetry

    • Cylinders have an infinite number of planes of symmetry

    • The number of planes of symmetry in other prisms will be equal to the number of lines of symmetry in its cross-section plus 1

  • Pyramids can have planes of symmetry too

    • The number of planes of symmetry in pyramids will be equal to the number of lines of symmetry in its 2D base

    • If the base of the pyramid is a regular polygon of n sides, it will have n planes of symmetry

A cube has 9 planes of symmetry, a cuboid has 3 planes of symmetry, a square based pyramid has 4 planes of symmetry

Can a 3D shape have rotational symmetry?

  • 3D shapes are able to be rotated around different axes

    • Depending on which axis the shape is rotated around, 3D shapes can have rotational symmetry

  • Recall that rotational symmetry is how many times the shape looks the same (congruent) when rotated through 360 degrees

    • See the example of the triangular prism where the cross-section is an equilateral triangle

A triangular prism (where the cross-section is an equilateral triangle) looks the same, 3 times, as it is rotated 360 degrees about an axis through the centre of the triangular cross section. Therefore it has rotational symmetry order 3.
A square pyramid has rotational symmetry order 4 about the vertical axis, as its base is a square. A cylinder has infinite rotational symmetry about the vertical axis, as its cross section is a circle. This would also be true for a cone.

Examiner Tips and Tricks

  • If you’re unsure in the exam, consider the properties of the 3D shape.

    • Is it a prism or a pyramid?

    • How many lines of symmetry are there in the 2D faces or cross-section?

Worked Example

The diagram below shows a cuboid of length 8 cm, width 5 cm and height 11 cm.

Write down the number of planes of symmetry of this cuboid.
 

A cuboid ABCDEFGH, with AB = 8 cm, BC = 5 cm and CG = 11 cm.

A plane of symmetry is where a shape can be “sliced” such that it is symmetrical

A cuboid with three different pairs of opposite rectangles has 3 planes of symmetry

3 planes of symmetry

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注