Back to 课程

Maths Gcse Edexcel Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Edexcel Higher
    4 主题
  3. Histograms Edexcel Higher
    3 主题
  4. Statistical-Diagrams Edexcel Higher
    7 主题
  5. Averages-Ranges-And-Data Edexcel Higher
    8 主题
  6. Combined-And-Conditional-Probability Edexcel Higher
    3 主题
  7. Tree-Diagrams Edexcel Higher
    1 主题
  8. Simple-Probability-Diagrams Edexcel Higher
    3 主题
  9. Transformations Edexcel Higher
    5 主题
  10. Vectors Edexcel Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Edexcel Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Edexcel Higher
    4 主题
  13. Pythagoras-And-Trigonometry Edexcel Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Edexcel Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Edexcel Higher
    5 主题
  16. Volume-And-Surface-Area Edexcel Higher
    3 主题
  17. Circles-Arcs-And-Sectors Edexcel Higher
    2 主题
  18. Area-And-Perimeter Edexcel Higher
    4 主题
  19. Circle-Theorems Edexcel Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Edexcel Higher
    3 主题
  22. Symmetry-And-Shapes Edexcel Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Edexcel Higher
    2 主题
  24. Standard-And-Compound-Units Edexcel Higher
    5 主题
  25. Direct-And-Inverse-Proportion Edexcel Higher
    2 主题
  26. Problem-Solving-With-Ratios Edexcel Higher
    2 主题
  27. Ratios Edexcel Higher
    3 主题
  28. Sequences Edexcel Higher
    4 主题
  29. Transformations-Of-Graphs Edexcel Higher
    2 主题
  30. Graphing-Inequalities Edexcel Higher
    2 主题
  31. Solving-Inequalities Edexcel Higher
    2 主题
  32. Real-Life-Graphs Edexcel Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Edexcel Higher
    2 主题
  34. Equation-Of-A-Circle Edexcel Higher
    2 主题
  35. Graphs-Of-Functions Edexcel Higher
    6 主题
  36. Linear-Graphs Edexcel Higher
    4 主题
  37. Coordinate-Geometry Edexcel Higher
    4 主题
  38. Functions Edexcel Higher
    3 主题
  39. Forming-And-Solving-Equations Edexcel Higher
    3 主题
  40. Iteration Edexcel Higher
    1 主题
  41. Simultaneous-Equations Edexcel Higher
    2 主题
  42. Quadratic-Equations Edexcel Higher
    4 主题
  43. Linear-Equations Edexcel Higher
    1 主题
  44. Algebraic-Proof Edexcel Higher
    1 主题
  45. Rearranging-Formulas Edexcel Higher
    2 主题
  46. Algebraic-Fractions Edexcel Higher
    4 主题
  47. Completing-The-Square Edexcel Higher
    1 主题
  48. Factorising Edexcel Higher
    6 主题
  49. Expanding-Brackets Edexcel Higher
    3 主题
  50. Algebraic-Roots-And-Indices Edexcel Higher
    1 主题
  51. Introduction Edexcel Higher
    7 主题
  52. Using-A-Calculator Edexcel Higher
    1 主题
  53. Surds Edexcel Higher
    2 主题
  54. Rounding-Estimation-And-Bounds Edexcel Higher
    2 主题
  55. Fractions-Decimals-And-Percentages Edexcel Higher
    3 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Higher
    4 主题
  57. Percentages Edexcel Higher
    3 主题
  58. Fractions Edexcel Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Edexcel Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Edexcel Higher
    4 主题
  61. Number-Operations Edexcel Higher
    10 主题
课 Progress
0% Complete

Exam code:1MA1

Squared & cubic units

How do I convert between squared units (areas)?

  • You need to square the unit conversion rates

    • E.g., 1 cm2 = 102 mm2 = 100 mm2

    • This is because area is 2D

    • The fact the units have a ‘squared’ on them will help you remember

  • It can help to imagine a square

    • E.g. 1 m2 is a square measuring 1 m × 1 m

    • In cm this would be 100 cm × 100 cm

    • So 1 m2 is equivalent to 10 000 cm2

  • The basic conversions for area are

    • 1 cm2 = 100 mm2

    • 1 m2 = 10 000 cm2

    • 1 km2 = 1 000 000 m2

  • You may be told conversions for other units in a question, such as

    • 1 hectare (ha) = 10 000 m2

How do I convert between cubed units (volume)?

  • You need to cube the unit conversion rates

    • E.g. 1 cm3 = 103 mm3 = 1000 mm3

    • This is because volume is 3D

    • The fact the units have a “cubed” on them will help you remember

  • It can help to imagine a cube

    • E.g. 1 m3 is a cube measuring 1 m × 1 m × 1 m

    • In cm this would be 100 cm × 100 cm × 100 cm

    • So 1 m3 is equivalent to 1 000 000 cm3

  • The basic conversions for volume are

    • 1 cm3 = 1000 mm3

    • 1 m3 = 1 000 000 cm3

    • 1 km3 = 1 000 000 000 m3

Worked Example

Convert

(a) 8254 mmto cm2

1 cm = 10 mm

1 cm2 = 102 mm2 = 100 mm2

8254 mm2 = (8254 ÷ 100) cm2 = 82.54 cm2

82.54 cm2

(b) 2.54 m3 to cm3

1 m = 100 cm
1 m3 = 1003 cm3 = 1 000 000 cm3

2.54 m3 = (2.54 × 1 000 000) cm3 = 2 540 000 cm3

2 540 000 cm3

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注