Back to 课程

Maths Gcse Edexcel Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Edexcel Higher
    4 主题
  3. Histograms Edexcel Higher
    3 主题
  4. Statistical-Diagrams Edexcel Higher
    7 主题
  5. Averages-Ranges-And-Data Edexcel Higher
    8 主题
  6. Combined-And-Conditional-Probability Edexcel Higher
    3 主题
  7. Tree-Diagrams Edexcel Higher
    1 主题
  8. Simple-Probability-Diagrams Edexcel Higher
    3 主题
  9. Transformations Edexcel Higher
    5 主题
  10. Vectors Edexcel Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Edexcel Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Edexcel Higher
    4 主题
  13. Pythagoras-And-Trigonometry Edexcel Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Edexcel Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Edexcel Higher
    5 主题
  16. Volume-And-Surface-Area Edexcel Higher
    3 主题
  17. Circles-Arcs-And-Sectors Edexcel Higher
    2 主题
  18. Area-And-Perimeter Edexcel Higher
    4 主题
  19. Circle-Theorems Edexcel Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Edexcel Higher
    3 主题
  22. Symmetry-And-Shapes Edexcel Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Edexcel Higher
    2 主题
  24. Standard-And-Compound-Units Edexcel Higher
    5 主题
  25. Direct-And-Inverse-Proportion Edexcel Higher
    2 主题
  26. Problem-Solving-With-Ratios Edexcel Higher
    2 主题
  27. Ratios Edexcel Higher
    3 主题
  28. Sequences Edexcel Higher
    4 主题
  29. Transformations-Of-Graphs Edexcel Higher
    2 主题
  30. Graphing-Inequalities Edexcel Higher
    2 主题
  31. Solving-Inequalities Edexcel Higher
    2 主题
  32. Real-Life-Graphs Edexcel Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Edexcel Higher
    2 主题
  34. Equation-Of-A-Circle Edexcel Higher
    2 主题
  35. Graphs-Of-Functions Edexcel Higher
    6 主题
  36. Linear-Graphs Edexcel Higher
    4 主题
  37. Coordinate-Geometry Edexcel Higher
    4 主题
  38. Functions Edexcel Higher
    3 主题
  39. Forming-And-Solving-Equations Edexcel Higher
    3 主题
  40. Iteration Edexcel Higher
    1 主题
  41. Simultaneous-Equations Edexcel Higher
    2 主题
  42. Quadratic-Equations Edexcel Higher
    4 主题
  43. Linear-Equations Edexcel Higher
    1 主题
  44. Algebraic-Proof Edexcel Higher
    1 主题
  45. Rearranging-Formulas Edexcel Higher
    2 主题
  46. Algebraic-Fractions Edexcel Higher
    4 主题
  47. Completing-The-Square Edexcel Higher
    1 主题
  48. Factorising Edexcel Higher
    6 主题
  49. Expanding-Brackets Edexcel Higher
    3 主题
  50. Algebraic-Roots-And-Indices Edexcel Higher
    1 主题
  51. Introduction Edexcel Higher
    7 主题
  52. Using-A-Calculator Edexcel Higher
    1 主题
  53. Surds Edexcel Higher
    2 主题
  54. Rounding-Estimation-And-Bounds Edexcel Higher
    2 主题
  55. Fractions-Decimals-And-Percentages Edexcel Higher
    3 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Higher
    4 主题
  57. Percentages Edexcel Higher
    3 主题
  58. Fractions Edexcel Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Edexcel Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Edexcel Higher
    4 主题
  61. Number-Operations Edexcel Higher
    10 主题
课 Progress
0% Complete

Exam code:1MA1

Speed-time graphs

How do I use a speed-time graph?

  • Kinematics is the study of motion of objects

    • It looks at how an object moves over time

  • Speed-time graphs show the speed of an object at different times

    • Speed is on the vertical axis

    • Time is on the horizontal axis 

  • The gradient of the graph is the acceleration

    • Acceleration space equals space speed over time space equals space rise over run

  • A positive gradient shows positive acceleration (speeding up)

  • negative gradient shows negative acceleration, (slowing down)

    • This is also called deceleration

Acceleration examples - a car decelerating as it brakes, and a rocket accelerating up towards space
  • Horizontal lines indicate moving at a constant speed

    • The object is neither speeding up or slowing down

    • If the constant speed is zero, then it is at rest

  • A straight line shows constant acceleration

  • A curve shows changing acceleration

    • To find the acceleration at a particular point on the graph

      • draw a tangent to the graph at this point and find its gradient

A graph showing tangents drawn at two points, A and B, on a curve. The tangent at point A has a shallow gradient and the tangent at point B has a steeper gradient.
  • The distance covered by the object is the area under the graph

    • Split the area into simple shapes, e.g. rectangles and triangles

    • Find the area of each shape and add them together

Examiner Tips and Tricks

  • Always check the vertical axis to see if you are given a speed-time graph or a distance-time graph!

Worked Example

The speed-time graph for a car travelling between two sets of traffic lights is shown below. 

real-life-graphs-s-t-graph-we-image

(a) For how long was the car travelling at a constant speed?

Constant speed is represented by horizontal lines

There is a horizontal line from 6 seconds to 15 seconds

15 – 6 = 9

9 seconds

(b) Calculate the acceleration during the first 6 seconds. 

In a speed-time graph the acceleration is the gradient of the graph

acceleration space equals space fraction numerator space rise over denominator run end fraction equals space speed over time

<img alt=”real-life-graphs-s-t-graph-we-image-2″ class=”ContentBlock_figure__vJw2q” data-nimg=”1″ decoding=”async” height=”1787″ loading=”lazy” sizes=”(max-width: 320px) 320w, (max-width: 640px) 640w, (max-width: 960

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注