Back to 课程

Maths Gcse Edexcel Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Edexcel Higher
    4 主题
  3. Histograms Edexcel Higher
    3 主题
  4. Statistical-Diagrams Edexcel Higher
    7 主题
  5. Averages-Ranges-And-Data Edexcel Higher
    8 主题
  6. Combined-And-Conditional-Probability Edexcel Higher
    3 主题
  7. Tree-Diagrams Edexcel Higher
    1 主题
  8. Simple-Probability-Diagrams Edexcel Higher
    3 主题
  9. Transformations Edexcel Higher
    5 主题
  10. Vectors Edexcel Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Edexcel Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Edexcel Higher
    4 主题
  13. Pythagoras-And-Trigonometry Edexcel Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Edexcel Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Edexcel Higher
    5 主题
  16. Volume-And-Surface-Area Edexcel Higher
    3 主题
  17. Circles-Arcs-And-Sectors Edexcel Higher
    2 主题
  18. Area-And-Perimeter Edexcel Higher
    4 主题
  19. Circle-Theorems Edexcel Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Edexcel Higher
    3 主题
  22. Symmetry-And-Shapes Edexcel Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Edexcel Higher
    2 主题
  24. Standard-And-Compound-Units Edexcel Higher
    5 主题
  25. Direct-And-Inverse-Proportion Edexcel Higher
    2 主题
  26. Problem-Solving-With-Ratios Edexcel Higher
    2 主题
  27. Ratios Edexcel Higher
    3 主题
  28. Sequences Edexcel Higher
    4 主题
  29. Transformations-Of-Graphs Edexcel Higher
    2 主题
  30. Graphing-Inequalities Edexcel Higher
    2 主题
  31. Solving-Inequalities Edexcel Higher
    2 主题
  32. Real-Life-Graphs Edexcel Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Edexcel Higher
    2 主题
  34. Equation-Of-A-Circle Edexcel Higher
    2 主题
  35. Graphs-Of-Functions Edexcel Higher
    6 主题
  36. Linear-Graphs Edexcel Higher
    4 主题
  37. Coordinate-Geometry Edexcel Higher
    4 主题
  38. Functions Edexcel Higher
    3 主题
  39. Forming-And-Solving-Equations Edexcel Higher
    3 主题
  40. Iteration Edexcel Higher
    1 主题
  41. Simultaneous-Equations Edexcel Higher
    2 主题
  42. Quadratic-Equations Edexcel Higher
    4 主题
  43. Linear-Equations Edexcel Higher
    1 主题
  44. Algebraic-Proof Edexcel Higher
    1 主题
  45. Rearranging-Formulas Edexcel Higher
    2 主题
  46. Algebraic-Fractions Edexcel Higher
    4 主题
  47. Completing-The-Square Edexcel Higher
    1 主题
  48. Factorising Edexcel Higher
    6 主题
  49. Expanding-Brackets Edexcel Higher
    3 主题
  50. Algebraic-Roots-And-Indices Edexcel Higher
    1 主题
  51. Introduction Edexcel Higher
    7 主题
  52. Using-A-Calculator Edexcel Higher
    1 主题
  53. Surds Edexcel Higher
    2 主题
  54. Rounding-Estimation-And-Bounds Edexcel Higher
    2 主题
  55. Fractions-Decimals-And-Percentages Edexcel Higher
    3 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Higher
    4 主题
  57. Percentages Edexcel Higher
    3 主题
  58. Fractions Edexcel Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Edexcel Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Edexcel Higher
    4 主题
  61. Number-Operations Edexcel Higher
    10 主题
课 Progress
0% Complete

Exam code:1MA1

Deciding the quadratic method

When should I solve by factorisation?

  • Use factorisation when the question asks to solve by factorisation

    • For example

      • part (a) Factorise 6x2 + 7x – 3

      • part (b) Solve 6x2 + 7x – 3 = 0

  • Use factorisation when solving two-term quadratic equations

    • For example, solve x2 – 4x = 0

      • Take out a common factor of x to get x(x – 4) = 0

      • So x = 0 and x = 4

    • For example, solve x2 – 9 = 0

      • Use the difference of two squares to factorise it as (x + 3)(x – 3) = 0

      • So x = -3 and x = 3

      • (Or rearrange to x2 = 9 and use ±√ to get x = ±3)

  • Factorising can often be the quickest way to solve a quadratic equation

When should I use the quadratic formula?

  • Use the quadratic formula when the question says to leave solutions correct to a given accuracy (2 decimal places, 3 significant figures etc)

    • This is a hint that the equation will not factorise

  • Use the quadratic formula when it may be faster than factorising

    • It’s quicker to solve 36x2 + 33x – 20 = 0 using the quadratic formula than by factorisation

  • Use the quadratic formula if in doubt, as it always works

When should I solve by completing the square?

  • Use completing the square when part (a) of a question says to complete the square and part (b) says to use part (a) to solve the equation

  • Use completing the square when making x the subject of harder formulae containing both x2 and x terms

    • For example, make x the subject of the formula x2 + 6x = y

      • Complete the square: (x + 3)2 – 9 = y

      • Add 9 to both sides: (x + 3)2 = y + 9

      • Take square roots and use ±: x plus 3 equals plus-or-minus square root of y plus 9 end root

      • Subtract 3: x equals negative 3 plus-or-minus square root of y plus 9 end root

  • Completing the square always works

    • But it’s not always quick or easy to do

Examiner Tips and Tricks

  • If your calculator solves quadratic equations, use it to check your solutions

  • If the solutions on your calculator are whole numbers or fractions (with no square roots), this means the quadratic equation does factorise

Worked Example

(a) Solve x squared minus 7 x plus 2 equals 0, giving your answers correct to 2 decimal places. 

“Correct to 2 decimal places” suggests using the quadratic formula
Substitute a = 1, b = -7 and c = 2 into the formula
Put brackets around any negative numbers 

<img alt=”x equals fraction numerator negative open parentheses negative 7 close parentheses plus-or-minus square root of open parentheses negative 7 close parentheses squared minus 4 cross times 1 cross times 2 end root over denominator 2 cross times 1 end fraction” data-mathml='<math ><semantics><mrow><mi >x</mi><mo >=</mo><mfrac ><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>1</mn><mo>×</mo><mn>2</mn></msqrt></mrow><mrow><mn>2</mn><mo>×</mo><mn>1</mn></mrow></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”52″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2252%22%20width%3D%22236%22%20wrs%3Abaseline%3D%2235%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%20mathcolor%3D%22%23000000%22%3Ex%3C%2Fmi%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmfrac%20mathcolor%3D%22%23000000%22%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmfenced%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmo%3E%26%23xB1%3B%3C%2Fmo%3E%3Cmsqrt%3E%3Cmsup%3E%3Cmfenced%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1697586e5bd1d4eb41b3094bbf9’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAExjdnQgDVUNBwAAAWgAAAA6Z2x5ZoPi2VsAAAGkAAACB2hlYWQQC2qxAAADrAAAADZoaGVhCGsXSAAAA%2BQAAAAkaG10eE2rRkcAAAQIAAAAFGxvY2EAHTwYAAAEHAAAABhtYXhwBT0FPgAABDQAAAAgbmFtZaBxlY4AAARUAAABn3Bvc3QB9wD6AAAF9AAAACBwcmVwa1uragAABhQAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEADgAAAAKAAgAAgACAD0AsQDXIhL%2F%2FwAAAD0AsQDXIhL%2F%2F%2F%2FE%2F1H%2FLN3yAAEAAAAAAAAAAAAAAAABVAMsAIABAABWACoCWAIeAQ4BLAIsAFoBgAKAAKAA1ACAAAAAAAAAACsAVQCAAKsA1QEAASsABwAAAAIAVQAAAwADqwADAAcAADMRIRElIREhVQKr%2FasCAP4AA6v8VVUDAAACAIAA6wLVAhUAAwAHAGUYAbAIELAG1LAGELAF1LAIELAB1LABELAA1LAGELAHPLAFELAEPLABELACPLAAELADPACwCBCwBtSwBhCwB9SwBxCwAdSwARCwAtSwBhCwBTywBxCwBDywARCwADywAhCwAzwxMBMhNSEdASE1gAJV%2FasCVQHAVdVVVQACAID%2F%2FwKAAqsACwAPAGUYAbAQELAP1LAPELAAPLAAELAB1LABELAE1LAEELAF1LABELAKPLAEELAHPLAFELAOPACwEBCwD9SwDxCwDNSwDBCwCdSwCRCwCtSwChCwAdSwARCwAtSwARCwBDywChCwBzwwMRMzNTMVMxUjFSMnBxEhFSGA1lXV1VUB1QIA%2FgAB1dbWVtTVAf7VVQACAIAAVQLVAoAAAwAHAEYYsAEUALEAABMQsQAJ5LEAARMQsAQ8sQYI9LACPDABsQgBExCxAAP2sAc8sQEF9bAGPLIFBwAQ9LACPLEJA%2BaxBAX1sAM8EzMBIxEzASOAVQIAVVX%2BAFUCgP3VAiv91QABAIABVQLVAasAAwAwGAGwBBCxAAP2sAM8sQIH9bABPLEFA%2BYAsQAAExCxAAblsQABExCwATyxAwX1sAI8EyEVIYACVf2rAatWAAABAAAAAQAA1XjOQV8PPPUAAwQA%2F%2F%2F%2F%2F9Y6E3P%2F%2F%2F%2F%2F1joTcwAA%2FyAEgAOrAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2FtgSAAAEAAAAAAAAAAAAAAAAAAAAFA1IAVQNWAIADAACAA1YAgANWAIAAAAAAAAAAKAAAALIAAAFOAAABvQAAAgcAAQAAAAUAXgAFAAAAAAACAIAEAAAAAAAEAADeAAAAAAAAABUBAgAAAAAAAAABABIAAAAAAAAAAAACAA4AEgAAAAAAAAADADAAIAAAAAAAAAAEABIAUAAAAAAAAAAFABYAYgAAAAAAAAAGAAkAeAAAAAAAAAAIABwAgQABAAAAAAABABIAAAABAAAAAAACAA4AEgABAAAAAAADADAAIAABAAAAAAAEABIAUAABAAAAAAAFABYAYgABAAAAAAAGAAkAeAABAAAAAAAIABwAgQADAAEECQABABIAAAADAAEECQACAA4AEgADAAEECQADADAAIAADAAEECQAEABIAUAADAAEECQAFABYAYgADAAEECQAGAAkAeAADAAEECQAIABwAgQBNAGEAdABoACAARgBvAG4AdABSAGUAZwB1AGwAYQByAE0AYQB0AGgAcwAgAEYAbwByACAATQBvAHIAZQAgAE0AYQB0AGgAIABGAG8AbgB0AE0AYQB0AGgAIABGAG8AbgB0AFYAZQByAHMAaQBvAG4AIAAxAC4AME1hdGhfRm9udABNAGEAdABoAHMAIABGAG8AcgAg

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注