Back to 课程

Maths Gcse Edexcel Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Foundation
    2 主题
  2. Statistical-Diagrams Edexcel Foundation
    8 主题
  3. Statistics-Toolkit Edexcel Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Edexcel Foundation
    2 主题
  5. Simple-Probability-Diagrams Edexcel Foundation
    4 主题
  6. Probability-Toolkit Edexcel Foundation
    3 主题
  7. Transformations Edexcel Foundation
    4 主题
  8. Vectors Edexcel Foundation
    3 主题
  9. Volume-And-Surface-Area Edexcel Foundation
    3 主题
  10. Circles-Arcs-And-Sectors Edexcel Foundation
    3 主题
  11. Area-And-Perimeter Edexcel Foundation
    4 主题
  12. Pythagoras-And-Trigonometry Edexcel Foundation
    5 主题
  13. Congruence-Similarity-And-Geometrical-Proof Edexcel Foundation
    5 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Foundation
    5 主题
  15. 2D-And-3D-Shapes Edexcel Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Edexcel Foundation
    5 主题
  17. Geometry-Toolkit Edexcel Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Edexcel Foundation
    2 主题
  19. Standard-And-Compound-Units Edexcel Foundation
    5 主题
  20. Direct-And-Inverse-Proportion Edexcel Foundation
    1 主题
  21. Ratio-Problem-Solving Edexcel Foundation
    2 主题
  22. Ratio-Toolkit Edexcel Foundation
    3 主题
  23. Sequences Edexcel Foundation
    4 主题
  24. Solving-Inequalities Edexcel Foundation
    3 主题
  25. Real-Life-Graphs Edexcel Foundation
    4 主题
  26. Graphs-Of-Functions Edexcel Foundation
    3 主题
  27. Linear-Graphs Edexcel Foundation
    3 主题
  28. Coordinate-Geometry Edexcel Foundation
    3 主题
  29. Functions Edexcel Foundation
    1 主题
  30. Forming-And-Solving-Equations Edexcel Foundation
    2 主题
  31. Simultaneous-Equations Edexcel Foundation
    1 主题
  32. Solving-Quadratic-Equations Edexcel Foundation
    1 主题
  33. Linear-Equations Edexcel Foundation
    3 主题
  34. Algebraic-Reasoning Edexcel Foundation
    1 主题
  35. Rearranging-Formulas Edexcel Foundation
    1 主题
  36. Factorising Edexcel Foundation
    3 主题
  37. Expanding-Brackets Edexcel Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Edexcel Foundation
    1 主题
  39. Algebra-Toolkit Edexcel Foundation
    4 主题
  40. Using-A-Calculator Edexcel Foundation
    1 主题
  41. Exact-Values Edexcel Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Edexcel Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Edexcel Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Foundation
    4 主题
  45. Percentages Edexcel Foundation
    5 主题
  46. Fractions Edexcel Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Edexcel Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Edexcel Foundation
    6 主题
  49. Number-Toolkit Edexcel Foundation
    9 主题
课 Progress
0% Complete

Exam code:1MA1

Compound interest

What is compound interest?

  • Compound interest is where interest is calculated on the running total, not just the starting amount

    • This is different from simple interest where interest is only based on the starting amount

  • e.g. £ 100 earns 10% interest each year, for 3 years

    • At the end of year 1, 10% of £ 100 is earned

      • The total balance will now be 100+10 = £ 110

    • At the end of year 2, 10% of £ 110 is earned

      • The balance will now be 110+11 = £ 121

    • At the end of year 3, 10% of £ 121 is earned

      • The balance will now be 121+12.1 = £ 133.10

How do I calculate compound interest?

  • Compound interest increases an amount by a percentage, and then increases the new amount by the same percentage

    • This process repeats each time period (yearly or monthly etc)

  • We can use a multiplier to carry out the percentage increase multiple times

    • To increase £ 300 by 5% once, we would find 300×1.05

    • To increase £ 300 by 5%, each year for 2 years, we would find (300×1.05)×1.05

      • This could be rewritten as 300×1.052

    • To increase £ 300 by 5%, each year for 3 years, we would find ((300×1.05)×1.05)×1.05

      • This could be rewritten as 300×1.053

  • This can be extended to any number of periods that the interest is applied for 

    • If £ 2000 is subject to 4% compound interest each year for 12 years

    • Find 2000×1.0412, which is £ 3202.06

  • Note that this method calculates the total balance at the end of the period, not the interest earned

How do I calculate depreciation?

  • A similar method can be used if something decreases in value by a percentage every year (e.g. a car)

  • This is known as depreciation 

  • Change the multiplier to one which represents a percentage decrease

    • e.g. a decrease of 15% would be a multiplier of 0.85

  • If a car worth £ 16 000 depreciates by 15% each year for 6 years

    • Its value will be 16 000 × 0.856, which is £ 6034.39

Compound interest formula

  • An alternative method is to use the following formula to calculate the final balance

    • Final balance = P open parentheses 1 plus r over 100 close parentheses to the power of n space end exponent where

      • P is the original amount,

      • r is the % increase,

      • and n is the number of years

    • Note that 1 plus r over 100 is the same value as the multiplier

      • e.g. 1.15 for 15% interest

  • This formula is not given in the exam

Examiner Tips and Tricks

  • Double check if the question uses simple interest or compound interest

  • The formula for compound interest is not given in the exam

Worked Example

Jasmina invests £ 1200 in a savings account which pays compound interest at the rate of 4% per year for 7 years.

To the nearest dollar, what is her investment worth at the end of the 7 years?

We want an increase of 4% per year, this is equivalent to a multiplier of 1.04, or 104% of the original amount

This multiplier is applied 7 times; <img alt=”cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 cross times 1.04 space equals space 1.04 to the power of 7″ data-mathml='<math ><semantics><mrow><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#215;</mo><mn >1</mn><mo >.</mo><mn >04</mn><mo >&#160;</mo><mo >=</mo><mo >&#160;</mo><mn >1</mn><mo >.</mo><msup><mn >04</mn><mn >7</mn></msup></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”commentary” height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22408%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E1%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E.%3C%2Fmo%3E%3Cmsup%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E04%3C%2Fmn%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E7%3C%2Fmn%3E%3C%2Fmsup%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1e9dd7d3164786ed04b1d189388’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAERjdnQgDVUNBwAAAWAAAAA6Z2x5ZoPi2VsAAAGcAAABZ2hlYWQQC2qxAAADBAAAADZoaGVhCGsXSAAAAzwAAAAkaG10eE2rRkcAAANgAAAAEGxvY2EAHTwYAAADcAAAABRtYXhwBT0FPgAAA4QAAAAgbmFtZaBxlY4AAAOkAAABn3Bvc3QB9wD6AAAFRAAAACBwcmVwa1uragAABWQAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQA

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注