Maths Gcse Edexcel Foundation
-
Scatter-Graphs-And-Correlation Edexcel Foundation2 主题
-
Statistical-Diagrams Edexcel Foundation8 主题
-
Comparing-Statistical-Diagrams Edexcel Foundation
-
Reading-And-Interpreting-Statistical-Diagrams Edexcel Foundation
-
Time-Series-Graphs Edexcel Foundation
-
Pie-Charts Edexcel Foundation
-
Frequency-Polygons Edexcel Foundation
-
Bar-Charts-And-Pictograms Edexcel Foundation
-
Tally-Charts-And-Frequency-Tables Edexcel Foundation
-
Stem-And-Leaf-Diagrams Edexcel Foundation
-
Comparing-Statistical-Diagrams Edexcel Foundation
-
Statistics-Toolkit Edexcel Foundation7 主题
-
Tree-Diagrams-And-Combined-Probability Edexcel Foundation2 主题
-
Simple-Probability-Diagrams Edexcel Foundation4 主题
-
Probability-Toolkit Edexcel Foundation3 主题
-
Transformations Edexcel Foundation4 主题
-
Vectors Edexcel Foundation3 主题
-
Volume-And-Surface-Area Edexcel Foundation3 主题
-
Circles-Arcs-And-Sectors Edexcel Foundation3 主题
-
Area-And-Perimeter Edexcel Foundation4 主题
-
Pythagoras-And-Trigonometry Edexcel Foundation5 主题
-
Congruence-Similarity-And-Geometrical-Proof Edexcel Foundation5 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Foundation5 主题
-
2D-And-3D-Shapes Edexcel Foundation4 主题
-
Angles-In-Polygons-And-Parallel-Lines Edexcel Foundation5 主题
-
Geometry-Toolkit Edexcel Foundation4 主题
-
Exchange-Rates-And-Best-Buys Edexcel Foundation2 主题
-
Standard-And-Compound-Units Edexcel Foundation5 主题
-
Direct-And-Inverse-Proportion Edexcel Foundation1 主题
-
Ratio-Problem-Solving Edexcel Foundation2 主题
-
Ratio-Toolkit Edexcel Foundation3 主题
-
Sequences Edexcel Foundation4 主题
-
Solving-Inequalities Edexcel Foundation3 主题
-
Real-Life-Graphs Edexcel Foundation4 主题
-
Graphs-Of-Functions Edexcel Foundation3 主题
-
Linear-Graphs Edexcel Foundation3 主题
-
Coordinate-Geometry Edexcel Foundation3 主题
-
Functions Edexcel Foundation1 主题
-
Forming-And-Solving-Equations Edexcel Foundation2 主题
-
Simultaneous-Equations Edexcel Foundation1 主题
-
Solving-Quadratic-Equations Edexcel Foundation1 主题
-
Linear-Equations Edexcel Foundation3 主题
-
Algebraic-Reasoning Edexcel Foundation1 主题
-
Rearranging-Formulas Edexcel Foundation1 主题
-
Factorising Edexcel Foundation3 主题
-
Expanding-Brackets Edexcel Foundation2 主题
-
Algebraic-Roots-And-Indices Edexcel Foundation1 主题
-
Algebra-Toolkit Edexcel Foundation4 主题
-
Using-A-Calculator Edexcel Foundation1 主题
-
Exact-Values Edexcel Foundation1 主题
-
Rounding-Estimation-And-Error-Intervals Edexcel Foundation4 主题
-
Fractions-Decimals-And-Percentages Edexcel Foundation2 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Edexcel Foundation4 主题
-
Percentages Edexcel Foundation5 主题
-
Fractions Edexcel Foundation6 主题
-
Multiplying-And-Dividing-Fractions Edexcel Foundation
-
Adding-And-Subtracting-Fractions Edexcel Foundation
-
Mixed-Numbers-And-Improper-Fractions Edexcel Foundation
-
Equivalent-And-Simplified-Fractions Edexcel Foundation
-
Fractions-Of-Amounts Edexcel Foundation
-
Introduction-To-Fractions Edexcel Foundation
-
Multiplying-And-Dividing-Fractions Edexcel Foundation
-
Powers-Roots-And-Standard-Form Edexcel Foundation4 主题
-
Types-Of-Number-Prime-Factors-Hcf-And-Lcm Edexcel Foundation6 主题
-
Number-Toolkit Edexcel Foundation9 主题
-
Counting-Principles Edexcel Foundation
-
Related-Calculations Edexcel Foundation
-
Multiplication-And-Division Edexcel Foundation
-
Addition-And-Subtraction Edexcel Foundation
-
Money-Calculations Edexcel Foundation
-
Negative-Numbers Edexcel Foundation
-
Place-Value Edexcel Foundation
-
Order-Of-Operations-Bidmas-Bodmas Edexcel Foundation
-
Mathematical-Operations Edexcel Foundation
-
Counting-Principles Edexcel Foundation
Nth-Terms-Of-Linear-Sequences Edexcel Foundation
Exam code:1MA1
Linear sequences
What is a linear sequence?
-
A linear sequence goes up (or down) by the same amount each time
-
This amount is called the common difference, d
-
For example:
1, 4, 7, 10, 13, …(adding 3, so d = 3)
15, 10, 5, 0, -5, … (subtracting 5, so d = -5)
-
-
Linear sequences are also called arithmetic sequences
How do I find the nth term formula for a linear sequence?
-
The formula is n th term = dn + b
-
d is the common difference
-
The amount it goes up by each time
-
-
b is the value before the first term (sometimes called the zero term)
-
Imagine going backwards
-
-
-
For example 5, 7, 9, 11, ….
-
The sequence adds 2 each time
-
d = 2
-
-
Now continue the sequence backwards, from 5, by one term
-
(3), 5, 7, 9, 11, …
-
b = 3
-
-
So the n th term = 2n + 3
-
-
For example 15, 10, 5, …
-
Subtracting 5 each time means d = -5
-
Going backwards from 15 gives 15 + 5 = 20
-
(20), 15, 10, 5, … so b = 20
-
-
The n th term = -5n + 20
-
Worked Example
Find a formula for the nth term of the sequence -7, -3, 1, 5, 9, …
The n th term is dn + b where d is the common difference and b is the term before the 1st term
The sequence goes up by 4 each time
d = 4
Continue the sequence backwards by one term (-7-4) to find b
(-11), -7, -3, 1, 5, 9, …
b = -11
Substitute d = 4 and b = -11 into dn + b
nth term = 4n – 11
Responses