Back to 课程

Maths Gcse Edexcel Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Foundation
    2 主题
  2. Statistical-Diagrams Edexcel Foundation
    8 主题
  3. Statistics-Toolkit Edexcel Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Edexcel Foundation
    2 主题
  5. Simple-Probability-Diagrams Edexcel Foundation
    4 主题
  6. Probability-Toolkit Edexcel Foundation
    3 主题
  7. Transformations Edexcel Foundation
    4 主题
  8. Vectors Edexcel Foundation
    3 主题
  9. Volume-And-Surface-Area Edexcel Foundation
    3 主题
  10. Circles-Arcs-And-Sectors Edexcel Foundation
    3 主题
  11. Area-And-Perimeter Edexcel Foundation
    4 主题
  12. Pythagoras-And-Trigonometry Edexcel Foundation
    5 主题
  13. Congruence-Similarity-And-Geometrical-Proof Edexcel Foundation
    5 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Foundation
    5 主题
  15. 2D-And-3D-Shapes Edexcel Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Edexcel Foundation
    5 主题
  17. Geometry-Toolkit Edexcel Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Edexcel Foundation
    2 主题
  19. Standard-And-Compound-Units Edexcel Foundation
    5 主题
  20. Direct-And-Inverse-Proportion Edexcel Foundation
    1 主题
  21. Ratio-Problem-Solving Edexcel Foundation
    2 主题
  22. Ratio-Toolkit Edexcel Foundation
    3 主题
  23. Sequences Edexcel Foundation
    4 主题
  24. Solving-Inequalities Edexcel Foundation
    3 主题
  25. Real-Life-Graphs Edexcel Foundation
    4 主题
  26. Graphs-Of-Functions Edexcel Foundation
    3 主题
  27. Linear-Graphs Edexcel Foundation
    3 主题
  28. Coordinate-Geometry Edexcel Foundation
    3 主题
  29. Functions Edexcel Foundation
    1 主题
  30. Forming-And-Solving-Equations Edexcel Foundation
    2 主题
  31. Simultaneous-Equations Edexcel Foundation
    1 主题
  32. Solving-Quadratic-Equations Edexcel Foundation
    1 主题
  33. Linear-Equations Edexcel Foundation
    3 主题
  34. Algebraic-Reasoning Edexcel Foundation
    1 主题
  35. Rearranging-Formulas Edexcel Foundation
    1 主题
  36. Factorising Edexcel Foundation
    3 主题
  37. Expanding-Brackets Edexcel Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Edexcel Foundation
    1 主题
  39. Algebra-Toolkit Edexcel Foundation
    4 主题
  40. Using-A-Calculator Edexcel Foundation
    1 主题
  41. Exact-Values Edexcel Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Edexcel Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Edexcel Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Foundation
    4 主题
  45. Percentages Edexcel Foundation
    5 主题
  46. Fractions Edexcel Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Edexcel Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Edexcel Foundation
    6 主题
  49. Number-Toolkit Edexcel Foundation
    9 主题
课 Progress
0% Complete

Exam code:1MA1

Rounding to significant figures

How do I round a number to a given significant figure?

  • To find the first significant figure when reading from left to right, find the biggest place value that has a non-zero digit

    • The first significant figure of 3097 is 3

    • The first significant figure of 0.006207 is 6

      • The zeros before the 6 are not significant

      • The zero after the 6 is significant

  • Count along to the right from the first significant figure to identify the position of the required significant figure 

    • Do count zeros that are between other non-zero digits

      • E.g. 0 is the second significant figure of 3097

      • 9 is the third significant figure of 3097

  • Use the normal rules for rounding

    • Count in units determined by the place value of the significant figure

      • If the second significant figure is in the 10’s column, count in 10’s

    • Identify numbers it could be rounded up or down to

    • Circle the number to the right of the significant figure

    • Use this value to determine which number it rounds to

  • For large numbers, complete places up to the decimal point with zeros

    • E.g. 34 568 to 2 significant figures is 35 000

  • For decimals, complete places between the decimal point and the first significant figure with zeros

    • E.g. 0.003 435 to 3 significant figures is 0.003 44

How do I know what degree of accuracy to give my answer to?

  • If a question requires your answer to be an exact value

    • You can leave it as a simplified fraction

      • E.g. 5 over 6

    • You can leave it in terms of pi or a square root

      • E.g. 4 pi, or square root of 3

    • If it is an exact decimal up to and including 5 s.f., you can write it out without rounding it

      • E.g. 0.9375, or 850.25

  • If the answer is not exact, an exam question will often state the required degree of accuracy for an answer

    • E.g. Give your answer to 2 significant figures

  • If the degree of accuracy is not asked for, use 3 significant figures 

    • All working and the final answer should show values correct to at least 4 significant figures

    • The final answer should then be rounded to 3 significant figures

  • In money calculations, unless the required degree of accuracy is stated in the question, you can look at the context

    • Round to 2 decimal places

      • E.g. $64.749214 will round to $64.75

    • Or to the nearest whole number, if this seems sensible (for example, other values are whole numbers)

      • $246 029.8567 rounds to $246 030

  • When calculating angles, all values should be given correctly to 1 decimal place

    • An angle of 43.5789degree will round to 43.6degree

    • An angle of 135.211…degree will round to 135.2°

Examiner Tips and Tricks

  • In an exam question check that you have written your answer correctly by considering if the value you have ended up with makes sense.

    • Remember the importance of zeros to indicate place value.

    • E.g. Round 2 530 457 to 3 significant figures, 253 (without the zeros) and 2 530 000 are very different sizes!

Worked Example

Round the following numbers to 3 significant figures.

(i) 345 256

(ii) 0.002 956 314

(iii) 3.997

(i) The first (non-zero) significant digit is in the hundred thousands column (3)
The third significant figure is therefore the value in the thousands column (5)

Count in thousands
Identify the numbers that it could round down to (345 000) or round up to (346 000)

Circle the digit on the right of the third significant figure (2)

<img alt=”345 space circle enclose 2 56″ data-mathml='<math ><semantics><mrow><mn >345</mn><mo >&#160;</mo><menclose notation=”circle”><mn>2</mn></menclose><mn >56</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”32″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2232%22%20width%3D%2273%22%20wrs%3Abaseline%3D%2221%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E345%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20mathcolor%3D%22%23000000%22%20notation%3D%22circle%22%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmenclose%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E56%3C%2Fmn%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3Etext%7Bfill%3A%23000000%3B%7D%3C%2Fstyle%3E%3C%2Fdefs%3E%3Ctext%20fill%3D%22%23000000%22%20font-family%3D%22Times%20New%20Roman%22%20font-size%3D%2218%22%20text-anchor%3D%22middle%22%

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注