Back to 课程

Maths Gcse Edexcel Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Edexcel Foundation
    2 主题
  2. Statistical-Diagrams Edexcel Foundation
    8 主题
  3. Statistics-Toolkit Edexcel Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Edexcel Foundation
    2 主题
  5. Simple-Probability-Diagrams Edexcel Foundation
    4 主题
  6. Probability-Toolkit Edexcel Foundation
    3 主题
  7. Transformations Edexcel Foundation
    4 主题
  8. Vectors Edexcel Foundation
    3 主题
  9. Volume-And-Surface-Area Edexcel Foundation
    3 主题
  10. Circles-Arcs-And-Sectors Edexcel Foundation
    3 主题
  11. Area-And-Perimeter Edexcel Foundation
    4 主题
  12. Pythagoras-And-Trigonometry Edexcel Foundation
    5 主题
  13. Congruence-Similarity-And-Geometrical-Proof Edexcel Foundation
    5 主题
  14. Bearings-Scale-Drawing-Constructions-And-Loci Edexcel Foundation
    5 主题
  15. 2D-And-3D-Shapes Edexcel Foundation
    4 主题
  16. Angles-In-Polygons-And-Parallel-Lines Edexcel Foundation
    5 主题
  17. Geometry-Toolkit Edexcel Foundation
    4 主题
  18. Exchange-Rates-And-Best-Buys Edexcel Foundation
    2 主题
  19. Standard-And-Compound-Units Edexcel Foundation
    5 主题
  20. Direct-And-Inverse-Proportion Edexcel Foundation
    1 主题
  21. Ratio-Problem-Solving Edexcel Foundation
    2 主题
  22. Ratio-Toolkit Edexcel Foundation
    3 主题
  23. Sequences Edexcel Foundation
    4 主题
  24. Solving-Inequalities Edexcel Foundation
    3 主题
  25. Real-Life-Graphs Edexcel Foundation
    4 主题
  26. Graphs-Of-Functions Edexcel Foundation
    3 主题
  27. Linear-Graphs Edexcel Foundation
    3 主题
  28. Coordinate-Geometry Edexcel Foundation
    3 主题
  29. Functions Edexcel Foundation
    1 主题
  30. Forming-And-Solving-Equations Edexcel Foundation
    2 主题
  31. Simultaneous-Equations Edexcel Foundation
    1 主题
  32. Solving-Quadratic-Equations Edexcel Foundation
    1 主题
  33. Linear-Equations Edexcel Foundation
    3 主题
  34. Algebraic-Reasoning Edexcel Foundation
    1 主题
  35. Rearranging-Formulas Edexcel Foundation
    1 主题
  36. Factorising Edexcel Foundation
    3 主题
  37. Expanding-Brackets Edexcel Foundation
    2 主题
  38. Algebraic-Roots-And-Indices Edexcel Foundation
    1 主题
  39. Algebra-Toolkit Edexcel Foundation
    4 主题
  40. Using-A-Calculator Edexcel Foundation
    1 主题
  41. Exact-Values Edexcel Foundation
    1 主题
  42. Rounding-Estimation-And-Error-Intervals Edexcel Foundation
    4 主题
  43. Fractions-Decimals-And-Percentages Edexcel Foundation
    2 主题
  44. Simple-And-Compound-Interest-Growth-And-Decay Edexcel Foundation
    4 主题
  45. Percentages Edexcel Foundation
    5 主题
  46. Fractions Edexcel Foundation
    6 主题
  47. Powers-Roots-And-Standard-Form Edexcel Foundation
    4 主题
  48. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Edexcel Foundation
    6 主题
  49. Number-Toolkit Edexcel Foundation
    9 主题
课 Progress
0% Complete

Exam code:1MA1

Finding equations of straight lines

What is the equation of a straight line?

  • The general equation of a straight line is y = mx + c where

    • m is the gradient

    • c  is the y-intercept

      • The value where it cuts the y-axis

  • y = 5x + 2 is a straight line with

    • gradient 5

    • y-intercept 2

  • y = 3 – 4x is a straight line with

    • gradient -4

    • y-intercept 3

How do I find the equation of a straight line from a graph?

  • Find the gradient by drawing a triangle and using

    • gradient equals rise over run

      • Positive for uphill lines, negative for downhill

  • Read off the y-intercept from the graph

    • Where it cuts the y-axis

  • Substitute these values into y = mx + c 

What if no y-intercept is shown?

  • If you can’t read off the y-intercept

    • find any point on the line

    • substitute it into the equation

    • solve to find c 

  • For example, a line with gradient 6 passes through (2, 15)

    • The y-intercept is unknown

      • Write y = 6x + c

    • Substitute in x = 2 and y = 15

      • 15 = 6 × 2 + c

      • 15 = 12 + c

    • Solve for c

      • = 3

    • The equation is = 6x + 3

What are the equations of horizontal and vertical lines?

  • A horizontal line has the equation y = c

    • c is the y-intercept

  • A vertical line has the equation = k

    •  k is the x-intercept

  • For example

    • y = 4

    • x = -2

Worked Example

(a) Find the equation of the straight line shown in the diagram below.

Graph of a straight line with negative gradient

Find m, the gradient
Identify any two points the line passes through and work out the rise and run

Line passes through (2, 4) and (10, 0)

Finding the equation of a straight line from a graph

The rise is 4
The run is 8

Calculate the fraction rise over run

rise over run equals 4 over 8 equals 1 half

The slope is downward (downhill), so it is a negative gradient

gradient, <img alt=”m equals negative 1 half” data-mathml='<math ><semantics><mrow><mi >m</mi><mo >=</mo><mo >-</mo><mfrac ><mn>1</mn><mn>2</mn></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”47″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2247%22%20width%3D%2267%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%20mathcolor%3D%22%23000000%22%3Em%3C%2Fmi%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E-%3C%2Fmo%3E%3Cmfrac%20mathcolor%3D%22%23000000%22%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math143f4d31b04031e49f5eb18baba’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAAA%2FGhlYWQQC2qxAAACkAAAADZoaGVhCGsXSAAAAsgAAAAkaG10eE2rRkcAAALsAAAADGxvY2EAHTwYAAAC%2BAAAABBtYXhwBT0FPgAAAwgAAAAgbmFtZaBxlY4AAAMoAAABn3Bvc3QB9wD6AAAEyAAAACBwcmVwa1uragAABOgAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACAD0iEv%2F%2FAAAAPSIS%2F%2F%2F%2FxN3wAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAIAgADrAtUCFQADAAcAZRgBsAgQsAbUsAYQsAXUsAgQsAHUsAEQsADUsAYQsAc8sAUQsAQ8sAEQsAI8sAAQsAM8ALAIELAG1LAGELAH1LAHELAB1LABELAC1LAGELAFPLAHELAEPLABELAAPLACELADPDEwEyE1IR0BITWAAlX9qwJVAcBV1VVVAAEAgAFVAtUBqwADADAYAbAEELEAA%2FawAzyxAgf1sAE8sQUD5gCxAAATELEABuWxAAETELABPLEDBfWwAjwTIRUhgAJV%2FasBq1YAAQAAAAEAANV4zkFfDzz1AAMEAP%2F%2F%2F%2F%2FWOhNz%2F%2F%2F%2F%2F9Y6E3MAAP8gBIADqwAAAAoAAgABAAAAAAABAAAD6P9qAAAXcAAA%2F7YEgAABAAAAAAAAAAAAAAAAAAAAAwNSAFUDVgCAA1YAgAAAAAAAAAAoAAAAsgAAAPwAAQAAAAMAXgAFAAAAAAACAIAEAAAAAAAEAADeAAAAAAAAABUBAgAAAAAAAAABABIAAAAAAAAAAAACAA4AE

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注