Maths Gcse Aqa Higher
-
Scatter-Graphs-And-Correlation Aqa Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Aqa Higher4 主题
-
Histograms Aqa Higher3 主题
-
Statistical-Diagrams Aqa Higher5 主题
-
Averages-Ranges-And-Data Aqa Higher7 主题
-
Combined-And-Conditional-Probability Aqa Higher3 主题
-
Tree-Diagrams Aqa Higher1 主题
-
Simple-Probability-Diagrams Aqa Higher3 主题
-
Transformations Aqa Higher5 主题
-
Vectors Aqa Higher6 主题
-
3D-Pythagoras-And-Trigonometry Aqa Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher4 主题
-
Pythagoras-And-Trigonometry Aqa Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Aqa Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Higher5 主题
-
Volume-And-Surface-Area Aqa Higher3 主题
-
Circles-Arcs-And-Sectors Aqa Higher2 主题
-
Area-And-Perimeter Aqa Higher4 主题
-
Circle-Theorems Aqa Higher7 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Higher3 主题
-
Symmetry-And-Shapes Aqa Higher6 主题
-
Exchange-Rates-And-Best-Buys Aqa Higher2 主题
-
Standard-And-Compound-Units Aqa Higher5 主题
-
Direct-And-Inverse-Proportion Aqa Higher2 主题
-
Problem-Solving-With-Ratios Aqa Higher2 主题
-
Ratios Aqa Higher3 主题
-
Sequences Aqa Higher4 主题
-
Transformations-Of-Graphs Aqa Higher2 主题
-
Graphing-Inequalities Aqa Higher2 主题
-
Solving-Inequalities Aqa Higher2 主题
-
Real-Life-Graphs Aqa Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher2 主题
-
Equation-Of-A-Circle Aqa Higher2 主题
-
Functions Aqa Higher3 主题
-
Forming-And-Solving-Equations Aqa Higher3 主题
-
Graphs-Of-Functions Aqa Higher6 主题
-
Linear-Graphs Aqa Higher4 主题
-
Coordinate-Geometry Aqa Higher4 主题
-
Iteration Aqa Higher1 主题
-
Simultaneous-Equations Aqa Higher2 主题
-
Quadratic-Equations Aqa Higher4 主题
-
Linear-Equations Aqa Higher1 主题
-
Algebraic-Proof Aqa Higher1 主题
-
Rearranging-Formulas Aqa Higher2 主题
-
Algebraic-Fractions Aqa Higher4 主题
-
Completing-The-Square Aqa Higher1 主题
-
Factorising Aqa Higher6 主题
-
Expanding-Brackets Aqa Higher3 主题
-
Algebraic-Roots-And-Indices Aqa Higher1 主题
-
Using-A-Calculator Aqa Higher1 主题
-
Surds Aqa Higher2 主题
-
Rounding-Estimation-And-Bounds Aqa Higher2 主题
-
Fractions-Decimals-And-Percentages Aqa Higher3 主题
-
Introduction Aqa Higher7 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher4 主题
-
Percentages Aqa Higher3 主题
-
Fractions Aqa Higher4 主题
-
Powers-Roots-And-Standard-Form Aqa Higher4 主题
-
Prime-Factors-Hcf-And-Lcm Aqa Higher4 主题
-
Number-Operations Aqa Higher10 主题
-
Product-Rule-For-Counting Aqa Higher
-
Systematic-Lists Aqa Higher
-
Related-Calculations Aqa Higher
-
Multiplication-And-Division Aqa Higher
-
Addition-And-Subtraction Aqa Higher
-
Money-Calculations Aqa Higher
-
Negative-Numbers Aqa Higher
-
Irrational-Numbers Aqa Higher
-
Order-Of-Operations-Bidmas-Bodmas Aqa Higher
-
Mathematical-Symbols Aqa Higher
-
Product-Rule-For-Counting Aqa Higher
Squared-And-Cubic-Units Aqa Higher
Exam code:8300
Squared & cubic units
How do I convert between squared units (areas)?
-
You need to square the unit conversion rates
-
E.g., 1 cm2 = 102 mm2 = 100 mm2
-
This is because area is 2D
-
The fact the units have a ‘squared’ on them will help you remember
-
-
It can help to imagine a square
-
E.g. 1 m2 is a square measuring 1 m × 1 m
-
In cm this would be 100 cm × 100 cm
-
So 1 m2 is equivalent to 10 000 cm2
-
-
The basic conversions for area are
-
1 cm2 = 100 mm2
-
1 m2 = 10 000 cm2
-
1 km2 = 1 000 000 m2
-
-
You may be told conversions for other units in a question, such as
-
1 hectare (ha) = 10 000 m2
-
How do I convert between cubed units (volume)?
-
You need to cube the unit conversion rates
-
E.g. 1 cm3 = 103 mm3 = 1000 mm3
-
This is because volume is 3D
-
The fact the units have a “cubed” on them will help you remember
-
-
It can help to imagine a cube
-
E.g. 1 m3 is a cube measuring 1 m × 1 m × 1 m
-
In cm this would be 100 cm × 100 cm × 100 cm
-
So 1 m3 is equivalent to 1 000 000 cm3
-
-
The basic conversions for volume are
-
1 cm3 = 1000 mm3
-
1 m3 = 1 000 000 cm3
-
1 km3 = 1 000 000 000 m3
-
Worked Example
Convert
(a) 8254 mm2 to cm2
1 cm = 10 mm
1 cm2 = 102 mm2 = 100 mm2
8254 mm2 = (8254 ÷ 100) cm2 = 82.54 cm2
82.54 cm2
(b) 2.54 m3 to cm3
1 m = 100 cm
1 m3 = 1003 cm3 = 1 000 000 cm3
2.54 m3 = (2.54 × 1 000 000) cm3 = 2 540 000 cm3
2 540 000 cm3
Responses