Back to 课程

Maths Gcse Aqa Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Aqa Higher
    4 主题
  3. Histograms Aqa Higher
    3 主题
  4. Statistical-Diagrams Aqa Higher
    5 主题
  5. Averages-Ranges-And-Data Aqa Higher
    7 主题
  6. Combined-And-Conditional-Probability Aqa Higher
    3 主题
  7. Tree-Diagrams Aqa Higher
    1 主题
  8. Simple-Probability-Diagrams Aqa Higher
    3 主题
  9. Transformations Aqa Higher
    5 主题
  10. Vectors Aqa Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Aqa Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher
    4 主题
  13. Pythagoras-And-Trigonometry Aqa Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Aqa Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Aqa Higher
    5 主题
  16. Volume-And-Surface-Area Aqa Higher
    3 主题
  17. Circles-Arcs-And-Sectors Aqa Higher
    2 主题
  18. Area-And-Perimeter Aqa Higher
    4 主题
  19. Circle-Theorems Aqa Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Aqa Higher
    3 主题
  22. Symmetry-And-Shapes Aqa Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Aqa Higher
    2 主题
  24. Standard-And-Compound-Units Aqa Higher
    5 主题
  25. Direct-And-Inverse-Proportion Aqa Higher
    2 主题
  26. Problem-Solving-With-Ratios Aqa Higher
    2 主题
  27. Ratios Aqa Higher
    3 主题
  28. Sequences Aqa Higher
    4 主题
  29. Transformations-Of-Graphs Aqa Higher
    2 主题
  30. Graphing-Inequalities Aqa Higher
    2 主题
  31. Solving-Inequalities Aqa Higher
    2 主题
  32. Real-Life-Graphs Aqa Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher
    2 主题
  34. Equation-Of-A-Circle Aqa Higher
    2 主题
  35. Functions Aqa Higher
    3 主题
  36. Forming-And-Solving-Equations Aqa Higher
    3 主题
  37. Graphs-Of-Functions Aqa Higher
    6 主题
  38. Linear-Graphs Aqa Higher
    4 主题
  39. Coordinate-Geometry Aqa Higher
    4 主题
  40. Iteration Aqa Higher
    1 主题
  41. Simultaneous-Equations Aqa Higher
    2 主题
  42. Quadratic-Equations Aqa Higher
    4 主题
  43. Linear-Equations Aqa Higher
    1 主题
  44. Algebraic-Proof Aqa Higher
    1 主题
  45. Rearranging-Formulas Aqa Higher
    2 主题
  46. Algebraic-Fractions Aqa Higher
    4 主题
  47. Completing-The-Square Aqa Higher
    1 主题
  48. Factorising Aqa Higher
    6 主题
  49. Expanding-Brackets Aqa Higher
    3 主题
  50. Algebraic-Roots-And-Indices Aqa Higher
    1 主题
  51. Using-A-Calculator Aqa Higher
    1 主题
  52. Surds Aqa Higher
    2 主题
  53. Rounding-Estimation-And-Bounds Aqa Higher
    2 主题
  54. Fractions-Decimals-And-Percentages Aqa Higher
    3 主题
  55. Introduction Aqa Higher
    7 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher
    4 主题
  57. Percentages Aqa Higher
    3 主题
  58. Fractions Aqa Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Aqa Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Aqa Higher
    4 主题
  61. Number-Operations Aqa Higher
    10 主题
课 Progress
0% Complete

Exam code:8300

Quadratic sequences

What is a quadratic sequence?

  • A quadratic sequence has an n th term formula that involves n2

  • The second differences are constant (the same)

    • These are the differences between the first differences

    • For example, 3, 9, 19, 33, 51, …
      1st Differences: 6, 10, 14, 18, …

      2nd Differences: 4, 4, 4, …

  • The sequence with the n th term formula n2 are the square numbers 

    • 1, 4, 9, 16, 25, 36, 49, …

      • From 12, 22, 32, 42, …

How do I find the nth term formula for any quadratic sequence?

  • STEP 1
    Work out the sequences of first and second differences

    • e.g. for the sequence 1, 10, 23, 40, 61

sequence

1

10

23

40

61

first difference

+9

+13

+17

+21

second difference

+4

+4

+4

  • STEP 2
    Divide the second difference by 2 to find the coefficient of n2

    • e.g. a = 4 ÷ 2 = 2

  • STEP 3
    Write out the first three or four terms of an2 and subtract the terms from the corresponding terms of the given sequence

    • e.g. for the sequence 1, 10, 23, 40, 61

sequence

1

10

23

40

2n2

2

8

18

32

difference

-1

2

5

8

  • STEP 4
    Work out the nth term of these differences to find the bnc part of the formula

    • e.g. the nth term of -1, 2, 5, 8, … is bn= 3n − 4

  • STEP 5
    Find an2 + bn + c by adding together this linear nth term to an2 term

    • e.g. an2 + bn += 2n2 + 3n − 4

Examiner Tips and Tricks

  • You must learn the square numbers from 12 to 152

Worked Example

For the sequence 5, 7, 11, 17, 25, ….

(a) Find a formula for the nth term.
Start by finding the first and second differences

Sequence: 5, 7, 11, 17, 25

First differences: 2, 4, 6, 8, …

Second difference: 2, 2, 2, …

Hence 

a = 2 ÷ 2 = 1

Now write down an2 (just n2 in this case as a = 1) and subtract the terms from the original sequence

sequence: 5, 7, 11, 17, …

an2. : 1, 4, 9, 16, …

 difference: 4, 3, 2, 1, …

Work out the nth term of these differences to give you bnc

bnc = −n + 5

Add an2 and bntogether to give you the nth term of the sequence

nth term = n2 − n + 5

(b) Hence find the 20th term of the sequence.

Substitute n = 20 into n2 − n + 5

(20)2 − 20 + 5 = 400 − 15 

20th term = 385

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注