Maths Gcse Aqa Higher
-
Scatter-Graphs-And-Correlation Aqa Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Aqa Higher4 主题
-
Histograms Aqa Higher3 主题
-
Statistical-Diagrams Aqa Higher5 主题
-
Averages-Ranges-And-Data Aqa Higher7 主题
-
Combined-And-Conditional-Probability Aqa Higher3 主题
-
Tree-Diagrams Aqa Higher1 主题
-
Simple-Probability-Diagrams Aqa Higher3 主题
-
Transformations Aqa Higher5 主题
-
Vectors Aqa Higher6 主题
-
3D-Pythagoras-And-Trigonometry Aqa Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher4 主题
-
Pythagoras-And-Trigonometry Aqa Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Aqa Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Higher5 主题
-
Volume-And-Surface-Area Aqa Higher3 主题
-
Circles-Arcs-And-Sectors Aqa Higher2 主题
-
Area-And-Perimeter Aqa Higher4 主题
-
Circle-Theorems Aqa Higher7 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Higher3 主题
-
Symmetry-And-Shapes Aqa Higher6 主题
-
Exchange-Rates-And-Best-Buys Aqa Higher2 主题
-
Standard-And-Compound-Units Aqa Higher5 主题
-
Direct-And-Inverse-Proportion Aqa Higher2 主题
-
Problem-Solving-With-Ratios Aqa Higher2 主题
-
Ratios Aqa Higher3 主题
-
Sequences Aqa Higher4 主题
-
Transformations-Of-Graphs Aqa Higher2 主题
-
Graphing-Inequalities Aqa Higher2 主题
-
Solving-Inequalities Aqa Higher2 主题
-
Real-Life-Graphs Aqa Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher2 主题
-
Equation-Of-A-Circle Aqa Higher2 主题
-
Functions Aqa Higher3 主题
-
Forming-And-Solving-Equations Aqa Higher3 主题
-
Graphs-Of-Functions Aqa Higher6 主题
-
Linear-Graphs Aqa Higher4 主题
-
Coordinate-Geometry Aqa Higher4 主题
-
Iteration Aqa Higher1 主题
-
Simultaneous-Equations Aqa Higher2 主题
-
Quadratic-Equations Aqa Higher4 主题
-
Linear-Equations Aqa Higher1 主题
-
Algebraic-Proof Aqa Higher1 主题
-
Rearranging-Formulas Aqa Higher2 主题
-
Algebraic-Fractions Aqa Higher4 主题
-
Completing-The-Square Aqa Higher1 主题
-
Factorising Aqa Higher6 主题
-
Expanding-Brackets Aqa Higher3 主题
-
Algebraic-Roots-And-Indices Aqa Higher1 主题
-
Using-A-Calculator Aqa Higher1 主题
-
Surds Aqa Higher2 主题
-
Rounding-Estimation-And-Bounds Aqa Higher2 主题
-
Fractions-Decimals-And-Percentages Aqa Higher3 主题
-
Introduction Aqa Higher7 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher4 主题
-
Percentages Aqa Higher3 主题
-
Fractions Aqa Higher4 主题
-
Powers-Roots-And-Standard-Form Aqa Higher4 主题
-
Prime-Factors-Hcf-And-Lcm Aqa Higher4 主题
-
Number-Operations Aqa Higher10 主题
-
Product-Rule-For-Counting Aqa Higher
-
Systematic-Lists Aqa Higher
-
Related-Calculations Aqa Higher
-
Multiplication-And-Division Aqa Higher
-
Addition-And-Subtraction Aqa Higher
-
Money-Calculations Aqa Higher
-
Negative-Numbers Aqa Higher
-
Irrational-Numbers Aqa Higher
-
Order-Of-Operations-Bidmas-Bodmas Aqa Higher
-
Mathematical-Symbols Aqa Higher
-
Product-Rule-For-Counting Aqa Higher
Deciding-The-Quadratic-Method Aqa Higher
Exam code:8300
Deciding the quadratic method
When should I solve by factorisation?
-
Use factorisation when the question asks to solve by factorisation
-
For example
-
part (a) Factorise 6x2 + 7x – 3
-
part (b) Solve 6x2 + 7x – 3 = 0
-
-
-
Use factorisation when solving two-term quadratic equations
-
For example, solve x2 – 4x = 0
-
Take out a common factor of x to get x(x – 4) = 0
-
So x = 0 and x = 4
-
-
For example, solve x2 – 9 = 0
-
Use the difference of two squares to factorise it as (x + 3)(x – 3) = 0
-
So x = -3 and x = 3
-
(Or rearrange to x2 = 9 and use ±√ to get x = ±3)
-
-
-
Factorising can often be the quickest way to solve a quadratic equation
When should I use the quadratic formula?
-
Use the quadratic formula when the question says to leave solutions correct to a given accuracy (2 decimal places, 3 significant figures etc)
-
This is a hint that the equation will not factorise
-
-
Use the quadratic formula when it may be faster than factorising
-
It’s quicker to solve 36x2 + 33x – 20 = 0 using the quadratic formula than by factorisation
-
-
Use the quadratic formula if in doubt, as it always works
When should I solve by completing the square?
-
Use completing the square when part (a) of a question says to complete the square and part (b) says to use part (a) to solve the equation
-
Use completing the square when making x the subject of harder formulae containing both x2 and x terms
-
For example, make x the subject of the formula x2 + 6x = y
-
Complete the square: (x + 3)2 – 9 = y
-
Add 9 to both sides: (x + 3)2 = y + 9
-
Take square roots and use ±:
-
Subtract 3:
-
-
-
Completing the square always works
-
But it’s not always quick or easy to do
-
Examiner Tips and Tricks
-
If your calculator solves quadratic equations, use it to check your solutions
-
If the solutions on your calculator are whole numbers or fractions (with no square roots), this means the quadratic equation does factorise
Worked Example
(a) Solve , giving your answers correct to 2 decimal places.
“Correct to 2 decimal places” suggests using the quadratic formula
Substitute a = 1, b = -7 and c = 2 into the formula
Put brackets around any negative numbers
<img alt=”x equals fraction numerator negative open parentheses negative 7 close parentheses plus-or-minus square root of open parentheses negative 7 close parentheses squared minus 4 cross times 1 cross times 2 end root over denominator 2 cross times 1 end fraction” data-mathml='<math ><semantics><mrow><mi >x</mi><mo >=</mo><mfrac ><mrow><mo>-</mo><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mo>±</mo><msqrt><msup><mfenced><mrow><mo>-</mo><mn>7</mn></mrow></mfenced><mn>2</mn></msup><mo>-</mo><mn>4</mn><mo>×</mo><mn>1</mn><mo>×</mo><mn>2</mn></msqrt></mrow><mrow><mn>2</mn><mo>×</mo><mn>1</mn></mrow></mfrac></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”52″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2252%22%20width%3D%22236%22%20wrs%3Abaseline%3D%2235%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%20mathcolor%3D%22%23000000%22%3Ex%3C%2Fmi%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmfrac%20mathcolor%3D%22%23000000%22%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmfenced%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmo%3E%26%23xB1%3B%3C%2Fmo%3E%3Cmsqrt%3E%3Cmsup%3E%3Cmfenced%3E%3Cmrow%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E7%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmn%3E4%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%3E2%3C%2Fmn%3E%3C%2Fmsqrt%3E%3C%2Fmrow%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmo%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmn%3E1%3C%2Fmn%3E%3C%2Fmrow%3E%3C%2Fmfrac%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1697586e5bd1d4eb41b3094bbf9’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAExjdnQgDVUNBwAAAWgAAAA6Z2x5ZoPi2VsAAAGkAAACB2hlYWQQC2qxAAADrAAAADZoaGVhCGsXSAAAA%2BQAAAAkaG10eE2rRkcAAAQIAAAAFGxvY2EAHTwYAAAEHAAAABhtYXhwBT0FPgAABDQAAAAgbmFtZaBxlY4AAARUAAABn3Bvc3QB9wD6AAAF9AAAACBwcmVwa1uragAABhQAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEADgAAAAKAAgAAgACAD0AsQDXIhL%2F%2FwAAAD0AsQDXIhL%2F%2F%2F%2FE%2F1H%2FLN3yAAEAAAAAAAAAAAAAAAABVAMsAIABAABWACoCWAIeAQ4BLAIsAFoBgAKAAKAA1ACAAAAAAAAAACsAVQCAAKsA1QEAASsABwAAAAIAVQAAAwADqwADAAcAADMRIRElIREhVQKr%2FasCAP4AA6v8VVUDAAACAIAA6wLVAhUAAwAHAGUYAbAIELAG1LAGELAF1LAIELAB1LABELAA1LAGELAHPLAFELAEPLABELACPLAAELADPACwCBCwBtSwBhCwB9SwBxCwAdSwARCwAtSwBhCwBTywBxCwBDywARCwADywAhCwAzwxMBMhNSEdASE1gAJV%2FasCVQHAVdVVVQACAID%2F%2FwKAAqsACwAPAGUYAbAQELAP1LAPELAAPLAAELAB1LABELAE1LAEELAF1LABELAKPLAEELAHPLAFELAOPACwEBCwD9SwDxCwDNSwDBCwCdSwCRCwCtSwChCwAdSwARCwAtSwARCwBDywChCwBzwwMRMzNTMVMxUjFSMnBxEhFSGA1lXV1VUB1QIA%2FgAB1dbWVtTVAf7VVQACAIAAVQLVAoAAAwAHAEYYsAEUALEAABMQsQAJ5LEAARMQsAQ8sQYI9LACPDABsQgBExCxAAP2sAc8sQEF9bAGPLIFBwAQ9LACPLEJA%2BaxBAX1sAM8EzMBIxEzASOAVQIAVVX%2BAFUCgP3VAiv91QABAIABVQLVAasAAwAwGAGwBBCxAAP2sAM8sQIH9bABPLEFA%2BYAsQAAExCxAAblsQABExCwATyxAwX1sAI8EyEVIYACVf2rAatWAAABAAAAAQAA1XjOQV8PPPUAAwQA%2F%2F%2F%2F%2F9Y6E3P%2F%2F%2F%2F%2F1joTcwAA%2FyAEgAOrAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2FtgSAAAEAAAAAAAAAAAAAAAAAAAAFA1IAVQNWAIADAACAA1YAgANWAIAAAAAAAAAAKAAAALIAAAFOAAABvQAAAgcAAQAAAAUAXgAFAAAAAAACAIAEAAAAAAAEAADeAAAAAAAAABUBAgAAAAAAAAABABIAAAAAAAAAAAACAA4AEgAAAAAAAAADADAAIAAAAAAAAAAEABIAUAAAAAAAAAAFABYAYgAAAAAAAAAGAAkAeAAAAAAAAAAIABwAgQABAAAAAAABABIAAAABAAAAAAACAA4AEgABAAAAAAADADAAIAABAAAAAAAEABIAUAABAAAAAAAFABYAYgABAAAAAAAGAAkAeAABAAAAAAAIABwAgQADAAEECQABABIAAAADAAEECQACAA4AEgADAAEECQADADAAIAADAAEECQAEABIAUAADAAEECQAFABYAYgADAAEECQAGAAkAeAADAAEECQAIABwAgQBNAGEAdABoACAARgBvAG4AdABSAGUAZwB1AGwAYQByAE0AYQB0AGgAcwAgAEYAbwByACAATQBvAHIAZQAgAE0AYQB0AGgAIABGAG8AbgB0AE0AYQB0AGgAIABGAG8AbgB0AFYAZQByAHMAaQBvAG4AIAAxAC4AME1hdGhfRm9udABNAGEAdABoAHMAIABGAG8AcgAgAE0AbwBy
Responses