Maths Gcse Aqa Higher
-
Scatter-Graphs-And-Correlation Aqa Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Aqa Higher4 主题
-
Histograms Aqa Higher3 主题
-
Statistical-Diagrams Aqa Higher5 主题
-
Averages-Ranges-And-Data Aqa Higher7 主题
-
Combined-And-Conditional-Probability Aqa Higher3 主题
-
Tree-Diagrams Aqa Higher1 主题
-
Simple-Probability-Diagrams Aqa Higher3 主题
-
Transformations Aqa Higher5 主题
-
Vectors Aqa Higher6 主题
-
3D-Pythagoras-And-Trigonometry Aqa Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher4 主题
-
Pythagoras-And-Trigonometry Aqa Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Aqa Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Higher5 主题
-
Volume-And-Surface-Area Aqa Higher3 主题
-
Circles-Arcs-And-Sectors Aqa Higher2 主题
-
Area-And-Perimeter Aqa Higher4 主题
-
Circle-Theorems Aqa Higher7 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Higher3 主题
-
Symmetry-And-Shapes Aqa Higher6 主题
-
Exchange-Rates-And-Best-Buys Aqa Higher2 主题
-
Standard-And-Compound-Units Aqa Higher5 主题
-
Direct-And-Inverse-Proportion Aqa Higher2 主题
-
Problem-Solving-With-Ratios Aqa Higher2 主题
-
Ratios Aqa Higher3 主题
-
Sequences Aqa Higher4 主题
-
Transformations-Of-Graphs Aqa Higher2 主题
-
Graphing-Inequalities Aqa Higher2 主题
-
Solving-Inequalities Aqa Higher2 主题
-
Real-Life-Graphs Aqa Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher2 主题
-
Equation-Of-A-Circle Aqa Higher2 主题
-
Functions Aqa Higher3 主题
-
Forming-And-Solving-Equations Aqa Higher3 主题
-
Graphs-Of-Functions Aqa Higher6 主题
-
Linear-Graphs Aqa Higher4 主题
-
Coordinate-Geometry Aqa Higher4 主题
-
Iteration Aqa Higher1 主题
-
Simultaneous-Equations Aqa Higher2 主题
-
Quadratic-Equations Aqa Higher4 主题
-
Linear-Equations Aqa Higher1 主题
-
Algebraic-Proof Aqa Higher1 主题
-
Rearranging-Formulas Aqa Higher2 主题
-
Algebraic-Fractions Aqa Higher4 主题
-
Completing-The-Square Aqa Higher1 主题
-
Factorising Aqa Higher6 主题
-
Expanding-Brackets Aqa Higher3 主题
-
Algebraic-Roots-And-Indices Aqa Higher1 主题
-
Using-A-Calculator Aqa Higher1 主题
-
Surds Aqa Higher2 主题
-
Rounding-Estimation-And-Bounds Aqa Higher2 主题
-
Fractions-Decimals-And-Percentages Aqa Higher3 主题
-
Introduction Aqa Higher7 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher4 主题
-
Percentages Aqa Higher3 主题
-
Fractions Aqa Higher4 主题
-
Powers-Roots-And-Standard-Form Aqa Higher4 主题
-
Prime-Factors-Hcf-And-Lcm Aqa Higher4 主题
-
Number-Operations Aqa Higher10 主题
-
Product-Rule-For-Counting Aqa Higher
-
Systematic-Lists Aqa Higher
-
Related-Calculations Aqa Higher
-
Multiplication-And-Division Aqa Higher
-
Addition-And-Subtraction Aqa Higher
-
Money-Calculations Aqa Higher
-
Negative-Numbers Aqa Higher
-
Irrational-Numbers Aqa Higher
-
Order-Of-Operations-Bidmas-Bodmas Aqa Higher
-
Mathematical-Symbols Aqa Higher
-
Product-Rule-For-Counting Aqa Higher
Completing-The-Square Aqa Higher
Exam code:8300
Solving by completing the square
How do I solve a quadratic equation by completing the square?
-
To solve x2 + bx + c = 0
-
replace the first two terms, x2 + bx, with (x + p)2 – p2 where p is half of b
-
This is completing the square
-
x2 + bx + c = 0 becomes (x + p)2 – p2 + c = 0
-
(where p is half of b)
-
-
rearrange this equation to make x the subject (using ±√)
-
-
For example, solve x2 + 10x + 9 = 0 by completing the square
-
x2 + 10x becomes (x + 5)2 – 52
-
so x2 + 10x + 9 = 0 becomes (x + 5)2 – 52 + 9 = 0
-
make x the subject (using ±√)
-
(x + 5)2 – 25 + 9 = 0
-
(x + 5)2 = 16
-
x + 5 = ±√16
-
x + 5 = ±4
-
x = -5 ±4
-
x = -1 or x = -9
-
-
-
It also works with numbers that lead to surds
-
The answers found will be in exact (surd) form
-
Examiner Tips and Tricks
-
When making x the subject to find the solutions, don’t expand the squared bracket back out again!
-
Remember to use ±√ to get two solutions
-
How do I solve by completing the square when there is a coefficient in front of the x2 term?
-
If the equation is ax2 + bx + c = 0 with a number (other than 1) in front of x2
-
you can divide both sides by a first (before completing the square)
-
For example 3x2 + 12x + 9 = 0
-
Divide both sides by 3
-
x2 + 4x + 3 = 0
-
-
Complete the square on this easier equation
-
-
-
This trick only works when completing the square to solve a quadratic equation
-
i.e. it has an “=0” on the right-hand side
-
-
Don’t do this when using completing the square to rewrite a quadratic expression in a new form
-
i.e. when there is no “=0”
-
For that, you must factorise out the a (but not divide by it)
-
and so on
-
-
How does completing the square link to the quadratic formula?
-
The quadratic formula actually comes from completing the square to solve ax2 + bx + c = 0
-
a, b and c are left as letters when completing the square
-
This makes it as general as possible
-
-
-
You can see hints of this when you solve quadratics
-
For example, solving x2 + 10x + 9 = 0
-
by completing the square, (x + 5)2 = 16 so x = -5 ± 4 (as above)
-
by the quadratic formula,
= -5 ± 4 (the same structure)
-
-
Worked Example
Solve <img alt=”2 x squared minus 8 x minus 24 equals 0″ data-mathml='<math ><semantics><mrow><mn>2</mn><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mn>8</mn><mi>x</mi><mo>-</mo><mn>24</mn><mo>=</mo><mn>0</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22124%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmsup%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmn%3E2
Responses