Back to 课程

Maths Gcse Aqa Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Aqa Higher
    4 主题
  3. Histograms Aqa Higher
    3 主题
  4. Statistical-Diagrams Aqa Higher
    5 主题
  5. Averages-Ranges-And-Data Aqa Higher
    7 主题
  6. Combined-And-Conditional-Probability Aqa Higher
    3 主题
  7. Tree-Diagrams Aqa Higher
    1 主题
  8. Simple-Probability-Diagrams Aqa Higher
    3 主题
  9. Transformations Aqa Higher
    5 主题
  10. Vectors Aqa Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Aqa Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher
    4 主题
  13. Pythagoras-And-Trigonometry Aqa Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Aqa Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Aqa Higher
    5 主题
  16. Volume-And-Surface-Area Aqa Higher
    3 主题
  17. Circles-Arcs-And-Sectors Aqa Higher
    2 主题
  18. Area-And-Perimeter Aqa Higher
    4 主题
  19. Circle-Theorems Aqa Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Aqa Higher
    3 主题
  22. Symmetry-And-Shapes Aqa Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Aqa Higher
    2 主题
  24. Standard-And-Compound-Units Aqa Higher
    5 主题
  25. Direct-And-Inverse-Proportion Aqa Higher
    2 主题
  26. Problem-Solving-With-Ratios Aqa Higher
    2 主题
  27. Ratios Aqa Higher
    3 主题
  28. Sequences Aqa Higher
    4 主题
  29. Transformations-Of-Graphs Aqa Higher
    2 主题
  30. Graphing-Inequalities Aqa Higher
    2 主题
  31. Solving-Inequalities Aqa Higher
    2 主题
  32. Real-Life-Graphs Aqa Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher
    2 主题
  34. Equation-Of-A-Circle Aqa Higher
    2 主题
  35. Functions Aqa Higher
    3 主题
  36. Forming-And-Solving-Equations Aqa Higher
    3 主题
  37. Graphs-Of-Functions Aqa Higher
    6 主题
  38. Linear-Graphs Aqa Higher
    4 主题
  39. Coordinate-Geometry Aqa Higher
    4 主题
  40. Iteration Aqa Higher
    1 主题
  41. Simultaneous-Equations Aqa Higher
    2 主题
  42. Quadratic-Equations Aqa Higher
    4 主题
  43. Linear-Equations Aqa Higher
    1 主题
  44. Algebraic-Proof Aqa Higher
    1 主题
  45. Rearranging-Formulas Aqa Higher
    2 主题
  46. Algebraic-Fractions Aqa Higher
    4 主题
  47. Completing-The-Square Aqa Higher
    1 主题
  48. Factorising Aqa Higher
    6 主题
  49. Expanding-Brackets Aqa Higher
    3 主题
  50. Algebraic-Roots-And-Indices Aqa Higher
    1 主题
  51. Using-A-Calculator Aqa Higher
    1 主题
  52. Surds Aqa Higher
    2 主题
  53. Rounding-Estimation-And-Bounds Aqa Higher
    2 主题
  54. Fractions-Decimals-And-Percentages Aqa Higher
    3 主题
  55. Introduction Aqa Higher
    7 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher
    4 主题
  57. Percentages Aqa Higher
    3 主题
  58. Fractions Aqa Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Aqa Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Aqa Higher
    4 主题
  61. Number-Operations Aqa Higher
    10 主题
课 Progress
0% Complete

Exam code:8300

Uses of prime factor decomposition

How can I use PFD to identify a square or cube number?

  • If all the indices in the prime factor decomposition of a number are even, then that number is a square number

    • E.g. The prime factor decomposition of 7056 is 24 × 32 × 72

    • All powers are even so it must be a square number

      • It can be written as (22 × 3 × 7)2

  • If all the indices in the prime factor decomposition of a number are multiples of 3, then that number is a cube number

    • E.g. The prime factor decomposition of 1728000 is 29 × 33 × 53

    • All powers are multiples of 3 so it must be a cube number

      • It can be written as (23 × 3 × 5)3

How can I use PFD to find the square root of a square number?

  • Write the number in its prime factor decomposition

    • All the indices should be even if it is a square number

  • For example, to find the square root of 144 = 24 × 32

    • Halve all of the indices

      • 22 × 3

      • So square root of 2 to the power of 4 cross times 3 squared end root equals 2 squared cross times 3

  • This is the prime factor decomposition of the square root of the number

    • To find it as an integer, multiply the prime factors together

    • 22 × 3 = 12, so the square root of 144 is 12

How can I use PFD to find the exact square root of a number?

  • If the number is not a square number, its exact square root can still be found using its prime factor decomposition

  • Write the number in its prime factor decomposition

    • 1440 equals 2 to the power of 5 cross times 3 squared cross times 5

  • Rewrite the prime factor decomposition with as many even indices as you can

    • E.g. 23 = 22 × 2, or 57 = 56 × 5

    • 1440 equals 2 to the power of 4 cross times 2 cross times 3 squared cross times 5

  • Collect the terms with even powers together

    • 1440 equals 2 to the power of 4 cross times 3 squared cross times 2 cross times 5

  • Square r

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注