Maths Gcse Aqa Higher
-
Scatter-Graphs-And-Correlation Aqa Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Aqa Higher4 主题
-
Histograms Aqa Higher3 主题
-
Statistical-Diagrams Aqa Higher5 主题
-
Averages-Ranges-And-Data Aqa Higher7 主题
-
Combined-And-Conditional-Probability Aqa Higher3 主题
-
Tree-Diagrams Aqa Higher1 主题
-
Simple-Probability-Diagrams Aqa Higher3 主题
-
Transformations Aqa Higher5 主题
-
Vectors Aqa Higher6 主题
-
3D-Pythagoras-And-Trigonometry Aqa Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher4 主题
-
Pythagoras-And-Trigonometry Aqa Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Aqa Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Higher5 主题
-
Volume-And-Surface-Area Aqa Higher3 主题
-
Circles-Arcs-And-Sectors Aqa Higher2 主题
-
Area-And-Perimeter Aqa Higher4 主题
-
Circle-Theorems Aqa Higher7 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Higher3 主题
-
Symmetry-And-Shapes Aqa Higher6 主题
-
Exchange-Rates-And-Best-Buys Aqa Higher2 主题
-
Standard-And-Compound-Units Aqa Higher5 主题
-
Direct-And-Inverse-Proportion Aqa Higher2 主题
-
Problem-Solving-With-Ratios Aqa Higher2 主题
-
Ratios Aqa Higher3 主题
-
Sequences Aqa Higher4 主题
-
Transformations-Of-Graphs Aqa Higher2 主题
-
Graphing-Inequalities Aqa Higher2 主题
-
Solving-Inequalities Aqa Higher2 主题
-
Real-Life-Graphs Aqa Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher2 主题
-
Equation-Of-A-Circle Aqa Higher2 主题
-
Functions Aqa Higher3 主题
-
Forming-And-Solving-Equations Aqa Higher3 主题
-
Graphs-Of-Functions Aqa Higher6 主题
-
Linear-Graphs Aqa Higher4 主题
-
Coordinate-Geometry Aqa Higher4 主题
-
Iteration Aqa Higher1 主题
-
Simultaneous-Equations Aqa Higher2 主题
-
Quadratic-Equations Aqa Higher4 主题
-
Linear-Equations Aqa Higher1 主题
-
Algebraic-Proof Aqa Higher1 主题
-
Rearranging-Formulas Aqa Higher2 主题
-
Algebraic-Fractions Aqa Higher4 主题
-
Completing-The-Square Aqa Higher1 主题
-
Factorising Aqa Higher6 主题
-
Expanding-Brackets Aqa Higher3 主题
-
Algebraic-Roots-And-Indices Aqa Higher1 主题
-
Using-A-Calculator Aqa Higher1 主题
-
Surds Aqa Higher2 主题
-
Rounding-Estimation-And-Bounds Aqa Higher2 主题
-
Fractions-Decimals-And-Percentages Aqa Higher3 主题
-
Introduction Aqa Higher7 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher4 主题
-
Percentages Aqa Higher3 主题
-
Fractions Aqa Higher4 主题
-
Powers-Roots-And-Standard-Form Aqa Higher4 主题
-
Prime-Factors-Hcf-And-Lcm Aqa Higher4 主题
-
Number-Operations Aqa Higher10 主题
-
Product-Rule-For-Counting Aqa Higher
-
Systematic-Lists Aqa Higher
-
Related-Calculations Aqa Higher
-
Multiplication-And-Division Aqa Higher
-
Addition-And-Subtraction Aqa Higher
-
Money-Calculations Aqa Higher
-
Negative-Numbers Aqa Higher
-
Irrational-Numbers Aqa Higher
-
Order-Of-Operations-Bidmas-Bodmas Aqa Higher
-
Mathematical-Symbols Aqa Higher
-
Product-Rule-For-Counting Aqa Higher
Prime-Factor-Decomposition Aqa Higher
Exam code:8300
Prime factor decomposition
What are prime factors?
-
A factor of a given number is a value that divides the given number exactly, with no remainder
-
e.g. 6 is a factor of 18
-
-
A prime number is a number which has exactly two factors; itself and 1
-
e.g. 5 is a prime number, as its only factors are 5 and 1
-
You should remember the first few prime numbers:
-
2, 3, 5, 7, 11, 13, 17, 19, …
-
-
-
The prime factors of a number are therefore all the primes which multiply to give that number
-
e.g. The prime factors of 30 are 2, 3, and 5
-
2 × 3 × 5 = 30
-
-
How do I find prime factors?
-
Use a factor tree to find prime factors
-
Split the number up into a pair of factors
-
Then split each of those factors up into another pair
-
Continue splitting up factors along each “branch” until you get to a prime number
-
These can not be split into anything other than 1 and themselves
-
It helps to circle the prime numbers at the end of the branches
-
-

-
A number can be uniquely written as a product of prime factors
-
Write the prime factors as a multiplication, in ascending order
-
360 = 2 × 2 × 2 × 3 × 3 × 5
-
-
This can then be written more concisely using powers
-
360 = 23 × 32 × 5
-
-
-
A question asking you to do this will usually be phrased as “Express … as the product of its prime factors”
Worked Example
Write 432 as the product of its prime factors.
Create a factor tree
Start with 432 and choose any two numbers that multiply together to make 432

Repeat this for the two factors, until all of the values are prime numbers and cannot be broken down any further

The answer will be the same regardless of the factors chosen in the first step
Write the prime numbers out as a product
Any repeated prime factors can be written as a power
<img alt=”432 space equals space bold 2 to the power of bold 4 bold space bold cross times bold space bold 3 to the power of bold 3 bold space” data-mathml='<math ><semantics><mrow><mn >432</mn><mo > </mo><mo >=</mo><mo > </mo><msup><mn mathvariant=”bold” >2</mn><mn mathvariant=”bold” >4</mn></msup><mo mathvariant=”bold” > </mo><mo mathvariant=”bold” >×</mo><mo mathvariant=”bold” > </mo><msup><mn mathvariant=”bold” >3</mn><mn mathvariant=”bold” >3</mn></msup><mo mathvariant=”bold” > </mo></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”finalAnswer” height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22120%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E432%3C%2Fmn%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmsup%3E%3Cmn%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E2%3C%2Fmn%3E%3Cmn%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E4%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E%26%23xD7%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmsup%3E%3Cmn%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E3%3C%2Fmn%3E%3Cmn%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E3%3C%2Fmn%3E%3C%2Fmsup%3E%3Cmo%20mathcolor%3D%22%23000000%22%20mathvariant%3D%22bold%22%3E%26%23xA0%3B%3C%2Fmo%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math102a87acd26f5771b4d57a7dfb3’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAABIWhlYWQQC2qxAAACuAAAADZoaGVhCGsXSAAAAvAAAAAkaG10eE2rRkcAAAMUAAAADGxvY2EAHTwYAAADIAAAABBtYXhwBT0FPgAAAzAAAAAgbmFtZaBxlY4AAANQAAABn3Bvc3QB9wD6AAAE8AAAACBwcmVwa1uragAABRAAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACAD0A1%2F%2F%2FAAAAPQDX%2F%2F%2F%2FxP8rAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMAB
Responses