Back to 课程

Maths Gcse Aqa Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Aqa Higher
    4 主题
  3. Histograms Aqa Higher
    3 主题
  4. Statistical-Diagrams Aqa Higher
    5 主题
  5. Averages-Ranges-And-Data Aqa Higher
    7 主题
  6. Combined-And-Conditional-Probability Aqa Higher
    3 主题
  7. Tree-Diagrams Aqa Higher
    1 主题
  8. Simple-Probability-Diagrams Aqa Higher
    3 主题
  9. Transformations Aqa Higher
    5 主题
  10. Vectors Aqa Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Aqa Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher
    4 主题
  13. Pythagoras-And-Trigonometry Aqa Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Aqa Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Aqa Higher
    5 主题
  16. Volume-And-Surface-Area Aqa Higher
    3 主题
  17. Circles-Arcs-And-Sectors Aqa Higher
    2 主题
  18. Area-And-Perimeter Aqa Higher
    4 主题
  19. Circle-Theorems Aqa Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Aqa Higher
    3 主题
  22. Symmetry-And-Shapes Aqa Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Aqa Higher
    2 主题
  24. Standard-And-Compound-Units Aqa Higher
    5 主题
  25. Direct-And-Inverse-Proportion Aqa Higher
    2 主题
  26. Problem-Solving-With-Ratios Aqa Higher
    2 主题
  27. Ratios Aqa Higher
    3 主题
  28. Sequences Aqa Higher
    4 主题
  29. Transformations-Of-Graphs Aqa Higher
    2 主题
  30. Graphing-Inequalities Aqa Higher
    2 主题
  31. Solving-Inequalities Aqa Higher
    2 主题
  32. Real-Life-Graphs Aqa Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher
    2 主题
  34. Equation-Of-A-Circle Aqa Higher
    2 主题
  35. Functions Aqa Higher
    3 主题
  36. Forming-And-Solving-Equations Aqa Higher
    3 主题
  37. Graphs-Of-Functions Aqa Higher
    6 主题
  38. Linear-Graphs Aqa Higher
    4 主题
  39. Coordinate-Geometry Aqa Higher
    4 主题
  40. Iteration Aqa Higher
    1 主题
  41. Simultaneous-Equations Aqa Higher
    2 主题
  42. Quadratic-Equations Aqa Higher
    4 主题
  43. Linear-Equations Aqa Higher
    1 主题
  44. Algebraic-Proof Aqa Higher
    1 主题
  45. Rearranging-Formulas Aqa Higher
    2 主题
  46. Algebraic-Fractions Aqa Higher
    4 主题
  47. Completing-The-Square Aqa Higher
    1 主题
  48. Factorising Aqa Higher
    6 主题
  49. Expanding-Brackets Aqa Higher
    3 主题
  50. Algebraic-Roots-And-Indices Aqa Higher
    1 主题
  51. Using-A-Calculator Aqa Higher
    1 主题
  52. Surds Aqa Higher
    2 主题
  53. Rounding-Estimation-And-Bounds Aqa Higher
    2 主题
  54. Fractions-Decimals-And-Percentages Aqa Higher
    3 主题
  55. Introduction Aqa Higher
    7 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher
    4 主题
  57. Percentages Aqa Higher
    3 主题
  58. Fractions Aqa Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Aqa Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Aqa Higher
    4 主题
  61. Number-Operations Aqa Higher
    10 主题
课 Progress
0% Complete

Exam code:8300

Multiplication

How do I multiply two numbers without a calculator?

  • There are a variety of written methods that can be used to add large numbers

    • You only need to know one method, but be able to use it confidently

    • Four common methods are described below, but there are many other valid methods

How do I use the column method?

  • This is an efficient method if you are confident with multiplication

  • To use the column method:

    • Write one number above the other lining up the digits using place value columns

    • Multiply the first digit (on the right) from the bottom value by each digit in the top value

      • Write the result under the line with the digits in the correct place value columns

    •  Multiply the next digit in the bottom value by each digit in the top value 

      • Always work from right to left

      • Use 0s as place holders when multiplying digits in columns other than the ones column

    • For example, 87 × 426 = 37 062

      bottom enclose table row blank blank blank 8 7 row blank cross times 4 2 6 end table end enclose
bottom enclose table row space blank 5 2 2 row blank 1 7 4 0 row cell space space 3 end cell 4 8 0 0 end table end enclose
table row cell space space 3 end cell 7 0 6 2 end table

How do I use the lattice method?

  • The lattice method is good for numbers with two or more digits

    • This method allows you to work with individual digits

  • To use the lattice method:

    • Draw a grid

      • The number of rows should be the same as the number of digits in one number

      • The number of columns should be the same as the number of digits in the other number

      • Draw diagonal lines through the boxes

    • Multiply each pair of digits, writing the result in the relevant box

      • Ones should be written in the bottom half of the box and tens in the top half of the box

    • Add the digits along the diagonals and write the result in the diagonal outside the grid

      • Carry the tens of any 2 digit result into the next diagonal

  • For example, 3516 × 23 = 80 868

Partition Complete, IGCSE & GCSE Maths revision notes

How do I use the grid method?

  • This method keeps the value of the larger number intact

    • It may take longer with two larger numbers

    • Be careful lining up numbers with lots of zeros!

  • To use the grid method

    • Draw a grid

      • The number of rows should be the same as the number of digits in one number

      • The number of columns should be the same as the number of digits in the other number

    • Label the rows and columns with the values of each digit

      • E.g. For 3516 you would use 3000, 500, 10 and 6

    • Multiply together the relevant values and put the results in the boxes

    • Add up all of the cells in the boxes 

  • For example, 3516 × 7 = 24 612

Partition Complete, IGCSE & GCSE Maths revision notes
Lattice Ex1, IGCSE & GCSE Maths revision notes

How do I use the repeated addition method?

  • This is best for smaller, simpler cases

    • You may have seen this called ‘chunking’

  • To use the repeated addition method

    • Build up to the answer using simple multiplication facts that can be worked out easily

    • To find 13 × 23 :
      1 × 23 = 23

      2 × 23 = 46

      4 × 23 = 92

      8 × 23 =184

    • So, 13 × 23 = 1 × 23 + 4 × 23 + 8 × 23 = 23 + 92 + 184 = 299

What words are used for multiplication and division?

  • Multiplication may be phrased using the words lots of, times or product

  • Division may be phrased using the words quotient, share and per

<svg aria-hidden=”true” class

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注