Back to 课程

Maths Gcse Aqa Higher

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Higher
    2 主题
  2. Cumulative-Frequency-And-Box-Plots Aqa Higher
    4 主题
  3. Histograms Aqa Higher
    3 主题
  4. Statistical-Diagrams Aqa Higher
    5 主题
  5. Averages-Ranges-And-Data Aqa Higher
    7 主题
  6. Combined-And-Conditional-Probability Aqa Higher
    3 主题
  7. Tree-Diagrams Aqa Higher
    1 主题
  8. Simple-Probability-Diagrams Aqa Higher
    3 主题
  9. Transformations Aqa Higher
    5 主题
  10. Vectors Aqa Higher
    6 主题
  11. 3D-Pythagoras-And-Trigonometry Aqa Higher
    1 主题
  12. Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher
    4 主题
  13. Pythagoras-And-Trigonometry Aqa Higher
    4 主题
  14. Area-And-Volume-Of-Similar-Shapes Aqa Higher
    1 主题
  15. Congruence-Similarity-And-Geometrical-Proof Aqa Higher
    5 主题
  16. Volume-And-Surface-Area Aqa Higher
    3 主题
  17. Circles-Arcs-And-Sectors Aqa Higher
    2 主题
  18. Area-And-Perimeter Aqa Higher
    4 主题
  19. Circle-Theorems Aqa Higher
    7 主题
  20. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher
    5 主题
  21. Angles-In-Polygons-And-Parallel-Lines Aqa Higher
    3 主题
  22. Symmetry-And-Shapes Aqa Higher
    6 主题
  23. Exchange-Rates-And-Best-Buys Aqa Higher
    2 主题
  24. Standard-And-Compound-Units Aqa Higher
    5 主题
  25. Direct-And-Inverse-Proportion Aqa Higher
    2 主题
  26. Problem-Solving-With-Ratios Aqa Higher
    2 主题
  27. Ratios Aqa Higher
    3 主题
  28. Sequences Aqa Higher
    4 主题
  29. Transformations-Of-Graphs Aqa Higher
    2 主题
  30. Graphing-Inequalities Aqa Higher
    2 主题
  31. Solving-Inequalities Aqa Higher
    2 主题
  32. Real-Life-Graphs Aqa Higher
    4 主题
  33. Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher
    2 主题
  34. Equation-Of-A-Circle Aqa Higher
    2 主题
  35. Functions Aqa Higher
    3 主题
  36. Forming-And-Solving-Equations Aqa Higher
    3 主题
  37. Graphs-Of-Functions Aqa Higher
    6 主题
  38. Linear-Graphs Aqa Higher
    4 主题
  39. Coordinate-Geometry Aqa Higher
    4 主题
  40. Iteration Aqa Higher
    1 主题
  41. Simultaneous-Equations Aqa Higher
    2 主题
  42. Quadratic-Equations Aqa Higher
    4 主题
  43. Linear-Equations Aqa Higher
    1 主题
  44. Algebraic-Proof Aqa Higher
    1 主题
  45. Rearranging-Formulas Aqa Higher
    2 主题
  46. Algebraic-Fractions Aqa Higher
    4 主题
  47. Completing-The-Square Aqa Higher
    1 主题
  48. Factorising Aqa Higher
    6 主题
  49. Expanding-Brackets Aqa Higher
    3 主题
  50. Algebraic-Roots-And-Indices Aqa Higher
    1 主题
  51. Using-A-Calculator Aqa Higher
    1 主题
  52. Surds Aqa Higher
    2 主题
  53. Rounding-Estimation-And-Bounds Aqa Higher
    2 主题
  54. Fractions-Decimals-And-Percentages Aqa Higher
    3 主题
  55. Introduction Aqa Higher
    7 主题
  56. Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher
    4 主题
  57. Percentages Aqa Higher
    3 主题
  58. Fractions Aqa Higher
    4 主题
  59. Powers-Roots-And-Standard-Form Aqa Higher
    4 主题
  60. Prime-Factors-Hcf-And-Lcm Aqa Higher
    4 主题
  61. Number-Operations Aqa Higher
    10 主题
课 Progress
0% Complete

Exam code:8300

Factorising by grouping

How do I factorise expressions with a common bracket?

  • Look at the expression 3x(t + 4) + 2(t + 4)

    • Both terms have a common bracket, (t + 4)

    • The whole bracket, (t + 4), can be “taken out” like a common factor:

      • (t + 4)(3x + 2)

  • This is like factorising 3xy + 2y to get y(3x + 2)

    • y represents (t + 4) above

How do I factorise by grouping?

  • Some questions may require you to form a common bracket yourself

    • For example xy + 3x + 5y + 15

      • The first two terms have a common factor of x

      • The second two terms have a common factor of 5

    • Factorising fully the first pair of terms, and the last pair of terms:

      • x(y + 3) + 5(y + 3)

    • You can now spot a common bracket of (y + 3)

      • (y + 3)(x + 5)

  • This is called factorising by grouping

Does it matter what order I group in?

  • You can often rearrange terms to factorise in a different order

    • Rewriting the same example, xy + 3x + 5y + 15, but in a different order:

      • xy + 5y + 3x + 15

      • The first pair of terms have a common factor of y

      • The second pair of terms have a common factor of 3

    • Factorising gives y(x + 5) + 3(x + 5)

      • You can now spot a common bracket, this time of (x + 5)

    • (x+5)(y+3)

      • This gives the same result as found previously

  • Some rearrangements cannot be factorised as “first pair” then “second pair”

    • For example, rewriting the above example as xy + 15 + 3x + 5y

Examiner Tips and Tricks

Once you have factorised something, expand it by hand to check your answer is correct.

Worked Example

Factorise ab + 3b + 2a + 6.

Method 1:
Notice that ab and 3b have a common factor of b
Notice that 2a and 6 have a common factor of 2

Factorise the first two terms, using b as a common factor

b(a + 3) + 2+ 6 

Factorise the second two terms, using 2 as a common factor 

b(a + 3) + 2(a + 3) 

(+ 3) is a common bracket 
We can now factorise out the bracket (a + 3)

(a + 3)(b + 2)

Method 2:
Notice that ab and 2a have a common factor of a
Notice that 3b and 6 have a common factor of 3

Rewrite the expression, grouping these terms together 

ab + 2a + 3b + 6

Factorise the first two terms, using a as a common factor 

a(b + 2) + 3b + 6

Factorise the second two terms, using 3 as a common factor 

a(b + 2) + 3(b + 2) 

(b + 2) is a common bracket
 We can now factorise out the bracket (b + 2)

(b + 2)(a + 3)

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注