Maths Gcse Aqa Higher
-
Scatter-Graphs-And-Correlation Aqa Higher2 主题
-
Cumulative-Frequency-And-Box-Plots Aqa Higher4 主题
-
Histograms Aqa Higher3 主题
-
Statistical-Diagrams Aqa Higher5 主题
-
Averages-Ranges-And-Data Aqa Higher7 主题
-
Combined-And-Conditional-Probability Aqa Higher3 主题
-
Tree-Diagrams Aqa Higher1 主题
-
Simple-Probability-Diagrams Aqa Higher3 主题
-
Transformations Aqa Higher5 主题
-
Vectors Aqa Higher6 主题
-
3D-Pythagoras-And-Trigonometry Aqa Higher1 主题
-
Sine-Cosine-Rule-And-Area-Of-Triangles Aqa Higher4 主题
-
Pythagoras-And-Trigonometry Aqa Higher4 主题
-
Area-And-Volume-Of-Similar-Shapes Aqa Higher1 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Higher5 主题
-
Volume-And-Surface-Area Aqa Higher3 主题
-
Circles-Arcs-And-Sectors Aqa Higher2 主题
-
Area-And-Perimeter Aqa Higher4 主题
-
Circle-Theorems Aqa Higher7 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Higher5 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Higher3 主题
-
Symmetry-And-Shapes Aqa Higher6 主题
-
Exchange-Rates-And-Best-Buys Aqa Higher2 主题
-
Standard-And-Compound-Units Aqa Higher5 主题
-
Direct-And-Inverse-Proportion Aqa Higher2 主题
-
Problem-Solving-With-Ratios Aqa Higher2 主题
-
Ratios Aqa Higher3 主题
-
Sequences Aqa Higher4 主题
-
Transformations-Of-Graphs Aqa Higher2 主题
-
Graphing-Inequalities Aqa Higher2 主题
-
Solving-Inequalities Aqa Higher2 主题
-
Real-Life-Graphs Aqa Higher4 主题
-
Estimating-Gradients-And-Areas-Under-Graphs Aqa Higher2 主题
-
Equation-Of-A-Circle Aqa Higher2 主题
-
Functions Aqa Higher3 主题
-
Forming-And-Solving-Equations Aqa Higher3 主题
-
Graphs-Of-Functions Aqa Higher6 主题
-
Linear-Graphs Aqa Higher4 主题
-
Coordinate-Geometry Aqa Higher4 主题
-
Iteration Aqa Higher1 主题
-
Simultaneous-Equations Aqa Higher2 主题
-
Quadratic-Equations Aqa Higher4 主题
-
Linear-Equations Aqa Higher1 主题
-
Algebraic-Proof Aqa Higher1 主题
-
Rearranging-Formulas Aqa Higher2 主题
-
Algebraic-Fractions Aqa Higher4 主题
-
Completing-The-Square Aqa Higher1 主题
-
Factorising Aqa Higher6 主题
-
Expanding-Brackets Aqa Higher3 主题
-
Algebraic-Roots-And-Indices Aqa Higher1 主题
-
Using-A-Calculator Aqa Higher1 主题
-
Surds Aqa Higher2 主题
-
Rounding-Estimation-And-Bounds Aqa Higher2 主题
-
Fractions-Decimals-And-Percentages Aqa Higher3 主题
-
Introduction Aqa Higher7 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Higher4 主题
-
Percentages Aqa Higher3 主题
-
Fractions Aqa Higher4 主题
-
Powers-Roots-And-Standard-Form Aqa Higher4 主题
-
Prime-Factors-Hcf-And-Lcm Aqa Higher4 主题
-
Number-Operations Aqa Higher10 主题
-
Product-Rule-For-Counting Aqa Higher
-
Systematic-Lists Aqa Higher
-
Related-Calculations Aqa Higher
-
Multiplication-And-Division Aqa Higher
-
Addition-And-Subtraction Aqa Higher
-
Money-Calculations Aqa Higher
-
Negative-Numbers Aqa Higher
-
Irrational-Numbers Aqa Higher
-
Order-Of-Operations-Bidmas-Bodmas Aqa Higher
-
Mathematical-Symbols Aqa Higher
-
Product-Rule-For-Counting Aqa Higher
Scale Aqa Higher
Exam code:8300
Scale
What is a scale?
-
For accurate drawings and constructions scale refers to a ratio
-
This ratio describes the relationship between the drawn size and the real-life size
-
-
Maps are usually drawn to a scale
-
The ratio will work for any unit of length applied to both sides
-
For example, the scale 1: 50 000 could mean 1 cm = 50 000 cm, 1 km = 50 000 km or even 1 yard = 50 000 yards
-
If you’re measuring the length from a map it will be easiest to measure in cm
-
Examiner Tips and Tricks
-
When working with lots of different units and converting between them, make sure to use “common sense” checks
-
e.g. When converting 500 km into metres, am I expecting a bigger or smaller number?
-
Maps
How can I use a scale to find the actual lengths from a map?
-
A map can be used to calculate the real-life distances between points
-
STEP 1
Use a ruler to measure the distance accurately on the map-
For example, measuring a length from A to B as 5.8 cm
-
-
STEP 2
Use the scale to find the actual distance in the same units-
For example, if the scale is 1 : 150 000 the actual distance = 5.8 cm × 150 000 = 870 000 cm
-
-
STEP 3
Convert the actual distance to a more suitable unit-
For example, 870 000 cm = 8 700 m = 8.7 km
-
Worked Example
A map is drawn where a length of 5 cm is equal to an actual distance of 0.6 km.
(a) Write the scale that is used for the map.
Convert both parts of the scale to the same units
The answer needs to be in the form 1 : n so convert 0.6 km into cm using 1 m = 100 cm and 1 km = 1000 m
0.6 km = 0.6 × 1000 m = 600 m
600 m = 600 × 100 cm = 60 000 cm
Now the ratio has the same units 5 cm : 60 000 cm, you can remove the units
5 : 60 000
Write in the form 1 : n by dividing both sides by 5
1 : 12 000
(b) The width of a park on the map is 17 mm.
Find the actual width of the park, giving your answer in metres.
Convert 17 mm into cm
17 mm = 1.7 cm
Use the scale to find 1.7 cm on the map in real life
1.7 cm × 12 000 = 20 400 cm
Convert to metres
20 400 cm ÷ 100
204 m
(c) The distance from the mouth of the ocean to the first bridge over a river is 125 metres.
Find this distance on the map.
Convert 125 metres to cm
125 m = (125 × 100 cm) = 12 500 cm
Use the scale to find 12500 cm in real life on the map
12 500 cm ÷ 12 000 = 1.0416… cm
1.04 cm
Scale drawings
How can I use a scale to find lengths for an accurate drawing?
-
A scale can be used to produce an accurate drawing or model of an object
-
STEP 1
Convert the scale into a ratio where one side is 1 cm and the other side uses the units the real distance is measured in-
For example, if the real distance is in km and the scale is 1 : 500 000,
-
1 : 500 000 = 1 cm : 500 000 cm = 1 cm : 5 000 m = 1 cm : 5 km
-
So 1 cm on the map, represents 5 km in real life
-
-
STEP 2
Use this ratio to convert the actual distance to the scale distance-
For example, if the actual distance = 20 km, the scale distance will be 20 ÷ 5 = 4 cm
-
Responses