Back to 课程

Maths Gcse Aqa Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Foundation
    2 主题
  2. Statistical-Diagrams Aqa Foundation
    6 主题
  3. Averages-Ranges-And-Data Aqa Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Aqa Foundation
    2 主题
  5. Simple-Probability-Diagrams Aqa Foundation
    4 主题
  6. Transformations Aqa Foundation
    4 主题
  7. Vectors Aqa Foundation
    3 主题
  8. Pythagoras-And-Trigonometry Aqa Foundation
    5 主题
  9. Congruence-Similarity-And-Geometrical-Proof Aqa Foundation
    5 主题
  10. Volume-And-Surface-Area Aqa Foundation
    3 主题
  11. Circles-Arcs-And-Sectors Aqa Foundation
    3 主题
  12. Area-And-Perimeter Aqa Foundation
    4 主题
  13. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation
    5 主题
  14. 2D-And-3D-Shapes Aqa Foundation
    4 主题
  15. Angles-In-Polygons-And-Parallel-Lines Aqa Foundation
    5 主题
  16. Symmetry-And-Shapes Aqa Foundation
    4 主题
  17. Exchange-Rates-And-Best-Buys Aqa Foundation
    2 主题
  18. Standard-And-Compound-Units Aqa Foundation
    5 主题
  19. Direct-And-Inverse-Proportion Aqa Foundation
    1 主题
  20. Ratio-Problem-Solving Aqa Foundation
    2 主题
  21. Sequences Aqa Foundation
    4 主题
  22. Solving-Inequalities Aqa Foundation
    3 主题
  23. Real-Life-Graphs Aqa Foundation
    4 主题
  24. Graphs-Of-Functions Aqa Foundation
    3 主题
  25. Linear-Graphs Aqa Foundation
    3 主题
  26. Coordinate-Geometry Aqa Foundation
    3 主题
  27. Functions Aqa Foundation
    1 主题
  28. Forming-And-Solving-Equations Aqa Foundation
    2 主题
  29. Simultaneous-Equations Aqa Foundation
    1 主题
  30. Solving-Quadratic-Equations Aqa Foundation
    1 主题
  31. Linear-Equations Aqa Foundation
    3 主题
  32. Algebraic-Reasoning Aqa Foundation
    1 主题
  33. Rearranging-Formulas Aqa Foundation
    1 主题
  34. Introduction Aqa Foundation
    10 主题
  35. Factorising Aqa Foundation
    3 主题
  36. Expanding-Brackets Aqa Foundation
    2 主题
  37. Algebraic-Roots-And-Indices Aqa Foundation
    1 主题
  38. Using-A-Calculator Aqa Foundation
    1 主题
  39. Exact-Values Aqa Foundation
    1 主题
  40. Rounding-Estimation-And-Error-Intervals Aqa Foundation
    4 主题
  41. Fractions-Decimals-And-Percentages Aqa Foundation
    2 主题
  42. Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation
    4 主题
  43. Percentages Aqa Foundation
    5 主题
  44. Fractions Aqa Foundation
    6 主题
  45. Powers-Roots-And-Standard-Form Aqa Foundation
    4 主题
  46. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation
    6 主题
  47. Number-Operations Aqa Foundation
    9 主题
课 Progress
0% Complete

Exam code:8300

Surface area

What is surface area?

  • The surface area of a 3D object is the sum of the areas of all the faces that make up the shape

    • Area is a 2D idea being applied into a 3D situation

    • A face is one of the flat or curved surfaces that make up a 3D object

How do I find the surface area of cubes, cuboids, pyramids, and prisms?

  • In cubes, cuboids, polygonal-based pyramids, and polygonal-based prisms (ie. pyramids and prisms whose bases have straight sides), all the faces are flat

  • The surface area is found by

    • calculating the area of each individual flat face

    • adding these areas together

  • When calculating surface area, it can be helpful to draw a 2D net for the 3D shape in question

    • For example, consider a square-based pyramid where the top of the pyramid is directly above the centre of the base

      • Its net will consist of a square base and four identical isosceles triangular faces

      • Calculate the area of a square and the area of each triangle then add them together

Net of a square-based pyramid

How do I find the surface area of a cylinder?

  • A cylinder has two flat surfaces (the top and the base) and one curved surface

  • The net of a cylinder consists of two circles and a rectangle

    A cylinder and its net
  • The curved surface area (which is a rectangle) of a cylinder, A, with base radius, r, and height, h, is therefore given by

    • A equals 2 pi italic space r space h

    • This is the circumference of the circle, multiplied by the height

    • This formula is not given to you in the exam

  • The total surface area of a cylinder, ATotal, can be found using the formula

    • A subscript T o t a l end subscript equals 2 pi italic space r italic space h plus 2 pi italic space r squared

    • This is the area of the curved surface (a rectangle), plus two circles of radius r

    • This formula is not given to you in the exam

How do I find the surface area of a cone?

  • A cone has one flat surface (the base) and one curved surface

  • The net of a cone, with radius, r, perpendicular height, h, and sloping edge, (slant height), l, consists of

    • A circular base

    • A sector with radius, l, and an arc length equal to the circumference of the base

A cone and its net
  • The curved surface area of a cone, A, with radius, r, perpendicular height, h, and sloping edge, l, can be found using the formula

    • <img alt=”A equals pi italic space r space l” data-mathml='<math ><semantics><mrow><mi>A</mi><mo>=</mo><mi>&#960;</mi><mo mathvariant=”italic”>&#160;</mo><mi>r</mi><mo>&#160;</mo><mi>l</mi></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%2265%22%20wrs%3Abaseline%3D%2216%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmi%3E%26%23x3C0%3B%3C%2Fmi%3E%3Cmo%20mathvariant%3D%22italic%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%3El%3C%2Fmi%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注