Maths Gcse Aqa Foundation
-
Scatter-Graphs-And-Correlation Aqa Foundation2 主题
-
Statistical-Diagrams Aqa Foundation6 主题
-
Averages-Ranges-And-Data Aqa Foundation7 主题
-
Tree-Diagrams-And-Combined-Probability Aqa Foundation2 主题
-
Simple-Probability-Diagrams Aqa Foundation4 主题
-
Transformations Aqa Foundation4 主题
-
Vectors Aqa Foundation3 主题
-
Pythagoras-And-Trigonometry Aqa Foundation5 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Foundation5 主题
-
Volume-And-Surface-Area Aqa Foundation3 主题
-
Circles-Arcs-And-Sectors Aqa Foundation3 主题
-
Area-And-Perimeter Aqa Foundation4 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation5 主题
-
2D-And-3D-Shapes Aqa Foundation4 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Foundation5 主题
-
Symmetry-And-Shapes Aqa Foundation4 主题
-
Exchange-Rates-And-Best-Buys Aqa Foundation2 主题
-
Standard-And-Compound-Units Aqa Foundation5 主题
-
Direct-And-Inverse-Proportion Aqa Foundation1 主题
-
Ratio-Problem-Solving Aqa Foundation2 主题
-
Sequences Aqa Foundation4 主题
-
Solving-Inequalities Aqa Foundation3 主题
-
Real-Life-Graphs Aqa Foundation4 主题
-
Graphs-Of-Functions Aqa Foundation3 主题
-
Linear-Graphs Aqa Foundation3 主题
-
Coordinate-Geometry Aqa Foundation3 主题
-
Functions Aqa Foundation1 主题
-
Forming-And-Solving-Equations Aqa Foundation2 主题
-
Simultaneous-Equations Aqa Foundation1 主题
-
Solving-Quadratic-Equations Aqa Foundation1 主题
-
Linear-Equations Aqa Foundation3 主题
-
Algebraic-Reasoning Aqa Foundation1 主题
-
Rearranging-Formulas Aqa Foundation1 主题
-
Introduction Aqa Foundation10 主题
-
Relative-And-Expected-Frequency Aqa Foundation
-
Sample-Space-Diagrams Aqa Foundation
-
Basic-Probability Aqa Foundation
-
Sharing-In-A-Ratio Aqa Foundation
-
Equivalent-And-Simplified-Ratios Aqa Foundation
-
Introduction-To-Ratios Aqa Foundation
-
Collecting-Like-Terms Aqa Foundation
-
Substitution Aqa Foundation
-
Algebraic-Vocabulary Aqa Foundation
-
Algebraic-Notation Aqa Foundation
-
Relative-And-Expected-Frequency Aqa Foundation
-
Factorising Aqa Foundation3 主题
-
Expanding-Brackets Aqa Foundation2 主题
-
Algebraic-Roots-And-Indices Aqa Foundation1 主题
-
Using-A-Calculator Aqa Foundation1 主题
-
Exact-Values Aqa Foundation1 主题
-
Rounding-Estimation-And-Error-Intervals Aqa Foundation4 主题
-
Fractions-Decimals-And-Percentages Aqa Foundation2 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation4 主题
-
Percentages Aqa Foundation5 主题
-
Fractions Aqa Foundation6 主题
-
Powers-Roots-And-Standard-Form Aqa Foundation4 主题
-
Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation6 主题
-
Number-Operations Aqa Foundation9 主题
-
Counting-Principles Aqa Foundation
-
Related-Calculations Aqa Foundation
-
Multiplication-And-Division Aqa Foundation
-
Addition-And-Subtraction Aqa Foundation
-
Money-Calculations Aqa Foundation
-
Negative-Numbers Aqa Foundation
-
Place-Value Aqa Foundation
-
Order-Of-Operations-Bidmasbodmas Aqa Foundation
-
Mathematical-Operations Aqa Foundation
-
Counting-Principles Aqa Foundation
Enlargements Aqa Foundation
Exam code:8300
Enlargements
What is an enlargement?
-
An enlargement changes the size and position of a shape
-
The length of each side of the shape is multiplied by a scale factor
-
If the scale factor is greater than 1 then the enlarged image will be bigger than the original object
-
If the scale factor is less than 1 then the enlarged image will be smaller than the original object
-
-
The centre of enlargement determines the position of the enlarged image
-
If the scale factor is greater than 1 then the enlarged image will be further away from the centre of enlargement
-
If the scale factor is less than 1 then the enlarged image will be closer to the centre of enlargement
-
How do I enlarge a shape?
-
STEP 1
Pick a vertex of the shape and count the horizontal and vertical distances from the centre of enlargement
-
STEP 2
Multiply both the horizontal and vertical distances by the given scale factor -
STEP 3
Start at the centre of enlargement and measure the new distances to find the enlarged vertex -
STEP 4
Repeat the steps for the other vertices-
You might be able to draw the enlarged shape from the first vertex by multiplying the original lengths by the scale factor
-
This can be done quickly if the shape is made up of vertical and horizontal lines
-
-
-
STEP 5
Connect the vertices on the enlarged image and label it
How do I describe an enlargement?
-
To describe an enlargement, you must:
-
State that the transformation is an enlargement
-
State the scale factor
-
Give the coordinates of the centre of enlargement
-
-
To find the scale factor:
-
Pick a side of the original shape
-
Identify the corresponding side on the enlarged image
-
Divide the length of the enlarged side by the length of the original side
-
-
To find the centre of enlargement:
-
Pick a vertex of the original shape
-
Identify the corresponding vertex on the enlarged image
-
Draw a line going through these two vertices
-
Repeat this for the other vertices of the original shape
-
These lines will intersect at the centre of enlargement
-
How do I reverse an enlargement?
-
If a shape has been enlarged, you can perform a single transformation to return the shape to its original size and position
-
An enlargement can be reversed by multiplying the enlarged shape by the reciprocal of the original scale factor
-
The centre of enlargement is the same
-
-
For a shape enlarged by a scale factor of 3 with centre of enlargement (-1, 6)
-
The reverse transformation is
-
an enlargement of scale factor
-
with centre of enlargement (-1, 6)
-
-
Examiner Tips and Tricks
-
To check that you have enlarged a shape correctly:
-
Draw lines going from the centre of enlargement to each of the vertices of the original shape
-
Extend these lines
-
The lines should go through the corresponding vertices of the enlarged image
-
Worked Example
(a) On the grid below enlarge shape C using scale factor 2 and centre of enlargement (2, 1).
Label your enlarged shape C’.

Start by marking on the centre of enlargement (CoE).
Count the number of squares in both a horizontal and vertical direction to go from the CoE to one of the vertices on the original object, this is 2 to the right and 3 up in this example.
As the scale factor is 2, multiply these distances by 2, so they become 4 to the right and 6 up.
Count these new distances from the CoE to the corresponding point on the enlarged image and mark it on.
Draw a line through the CoE and the pair of corresponding points, they should line up in a straight line.

Repeat this process for each of the vertices on the original object (or at least 2).
Join adjacent vertices on the enlarged image as you go.
Label the enlarged image C’.

(b) Describe fully the single transformation that creates shape B from shape A.

We can see that the image is larger than the original object, therefore it must be an enlargement.
As the enlarged image is bigger than the original object, the scale factor must be greater than 1.
Compare two corresponding edges on the object and the image to find the scale factor.
The height of the original “H” is 3 squares
The height of the enlarged “H” is 9 squares
<img alt=”therefore Scale space Factor space equals 9 over 3 equals 3″ data-mathml='<math ><semantics><mrow><mo >∴</mo><mi >Scale</mi><mo > </mo><mi >Factor</mi><mo > </mo><mo >=</mo><mfrac ><mn>9</mn><mn>3</mn></mfrac><mo >=</mo><mn >3</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”47″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2247%22%20width%3D%22171%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23×2234%3B%3C%2Fmo%3E%3Cmi%20mathcolor%3D%22%23000000%22%3EScale%3C%2Fmi%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%20mathcolor%3D%22%23000000%22%3EFactor%3C%2Fmi%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmfrac%20mathcolor%3D%22%23000000%22%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%3D%3C%2Fmo%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E3%3C%2Fmn%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1f0b57a9ccae93e289fb2a26cc8’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAABL2hlYWQQC2qxAAACxAAAADZoaGVhCGsXSAAAAvwAAAAkaG10eE2rRkcAAAMgAAAADGxvY2EAHTwYAAADLAAAABBtYXhwBT0FPgAAAzwAAAAgbmFtZaBxlY4AAANcAAABn3Bvc3QB9wD6AAAE%2FAAAACBwcmVwa1uragAABRwAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACAD0iNP%2F%2FAAAAPSI0%2F%2F%2F%2FxN3OAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAIAgADrAtUCFQADAAcAZRgBsAgQsAbUsAYQsAXUsAgQsAHUsAEQsADUsAYQsAc8sAUQsAQ8sAEQsAI8sAAQsAM8ALAIELAG1LAGELAH1LAHELAB1LABELAC1LAGELAFPLAHELAEPLABELAAPLACELADPDEwEyE1IR0BITWAAlX9qwJVAcBV1VVVAAMAbAArAusCQAADAAcACwBNGAGwDBCwBNSwBBCwBtSwBBCwAtSwAhCwANSwBRCwC9SwCxCwCdQAsAwQsAfUsAcQsAXUsAcQsALUsAIQsADUsAIQsAs8sAAQsAg8MDE3MzUjATM1IxMzNSNsgIABAICA%2F4CAK4ABFYD964AAAAEAAAABAADVeM5BXw889QADBAD%2F%2F%2F%2F%2F1joTc%2F%2F%2F%2F%2F%2FWOhNzAAD%2FIASAA6sAAAAKAAIAAQAAAAAAAQAAA%2Bj%2FagAAF3AAAP%2B2BIAAAQAAAAAAAAAAAAAAAAAAAAMDUgBVA1YAgANVAGwAAAAAAAAAKAAAALIAAAEvAAEAAAADAF4ABQAAAAAAAgCABAAAAAAABAAA3gAAAAAAAAAVAQIAAAAAAAAAAQASAAAAAAAAAAAAAgAOABIAAAAAAAAAAwAwACAAAAAAAAAABAASAFAAAAAAAAAABQAWAGIAAAAAAAAABgAJAHgAAAAAAAAACAAcAIEAAQAAAAAAAQASAAAAAQAAAAAAAgAOABIAAQAAAAAAAwAwACAAAQAAAAAABAASAFAAAQAAAAAABQAWAGIAAQAAAAAABgAJAHgAAQAAAAAACAAcAIEAAwABBAkAAQASAAAAAwABBAkAAgAOABIAAwABBAkAAwAwACAAAwABBAkABAASAFAAAwABBAkABQAWAGIAAwABBAkABgAJAHgAAwABBAkACAAcAIEATQBhAHQAaAAgAEYAbwBuAHQAUgBlAGcAd
Responses