Back to 课程

Maths Gcse Aqa Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Foundation
    2 主题
  2. Statistical-Diagrams Aqa Foundation
    6 主题
  3. Averages-Ranges-And-Data Aqa Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Aqa Foundation
    2 主题
  5. Simple-Probability-Diagrams Aqa Foundation
    4 主题
  6. Transformations Aqa Foundation
    4 主题
  7. Vectors Aqa Foundation
    3 主题
  8. Pythagoras-And-Trigonometry Aqa Foundation
    5 主题
  9. Congruence-Similarity-And-Geometrical-Proof Aqa Foundation
    5 主题
  10. Volume-And-Surface-Area Aqa Foundation
    3 主题
  11. Circles-Arcs-And-Sectors Aqa Foundation
    3 主题
  12. Area-And-Perimeter Aqa Foundation
    4 主题
  13. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation
    5 主题
  14. 2D-And-3D-Shapes Aqa Foundation
    4 主题
  15. Angles-In-Polygons-And-Parallel-Lines Aqa Foundation
    5 主题
  16. Symmetry-And-Shapes Aqa Foundation
    4 主题
  17. Exchange-Rates-And-Best-Buys Aqa Foundation
    2 主题
  18. Standard-And-Compound-Units Aqa Foundation
    5 主题
  19. Direct-And-Inverse-Proportion Aqa Foundation
    1 主题
  20. Ratio-Problem-Solving Aqa Foundation
    2 主题
  21. Sequences Aqa Foundation
    4 主题
  22. Solving-Inequalities Aqa Foundation
    3 主题
  23. Real-Life-Graphs Aqa Foundation
    4 主题
  24. Graphs-Of-Functions Aqa Foundation
    3 主题
  25. Linear-Graphs Aqa Foundation
    3 主题
  26. Coordinate-Geometry Aqa Foundation
    3 主题
  27. Functions Aqa Foundation
    1 主题
  28. Forming-And-Solving-Equations Aqa Foundation
    2 主题
  29. Simultaneous-Equations Aqa Foundation
    1 主题
  30. Solving-Quadratic-Equations Aqa Foundation
    1 主题
  31. Linear-Equations Aqa Foundation
    3 主题
  32. Algebraic-Reasoning Aqa Foundation
    1 主题
  33. Rearranging-Formulas Aqa Foundation
    1 主题
  34. Introduction Aqa Foundation
    10 主题
  35. Factorising Aqa Foundation
    3 主题
  36. Expanding-Brackets Aqa Foundation
    2 主题
  37. Algebraic-Roots-And-Indices Aqa Foundation
    1 主题
  38. Using-A-Calculator Aqa Foundation
    1 主题
  39. Exact-Values Aqa Foundation
    1 主题
  40. Rounding-Estimation-And-Error-Intervals Aqa Foundation
    4 主题
  41. Fractions-Decimals-And-Percentages Aqa Foundation
    2 主题
  42. Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation
    4 主题
  43. Percentages Aqa Foundation
    5 主题
  44. Fractions Aqa Foundation
    6 主题
  45. Powers-Roots-And-Standard-Form Aqa Foundation
    4 主题
  46. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation
    6 主题
  47. Number-Operations Aqa Foundation
    9 主题
课 Progress
0% Complete

Exam code:8300

Interpreting inequalities

What is an inequality?

  • An inequality tells you that something is greater than (>) or less than (<) something else

    • x > 5 means x is greater than 5 

      • x could be 6, 7, 8, 9, …

  • Inequalities may also include being equal (=) 

    • ⩾ means greater than or equal to

    • ⩽ means less than or equal to

      • x ⩽ 10 means x is less than or equal to 10

        • x could be 10, 9, 8, 7, 6,….

  • When they cannot be equal, they are called strict inequalities

    • > and < are strict inequalities

      • x > 5 does not include 5 (strict)

      • x ⩾ 5 does include 5 (not strict)

How do I find integers that satisfy inequalities?

  • You may be given two end points and have to list the integer (whole number) values of x that satisfy the inequality

    • Look at whether each end point is included or not 

      • 3 ⩽ x ⩽ 6

        • x = 3, 4, 5, 6

      • 3 ⩽ x < 6

        • x = 3, 4, 5

      • 3 < x ⩽ 6

        • x = 4, 5, 6

      • 3 < x < 6

        • x = 4, 5

  • If only one end point is given, there are an infinite number of integers

    • x > 2

      • x = 3, 4, 5, 6, …

    • x ⩽ 2

      • x = 2, 1, 0, -1, -2, …

      • Remember zero and negative whole numbers are integers

      • If the question had said positive integers only then just list x = 2, 1

  • You may be asked to find integers that satisfy two inequalities

    • 0 < x < 5 and x ⩾ 3

      • List separately: x = 1, 2, 3, 4 and x = 3, 4, 5, 6, …

      • Find the values that appear in both lists: x = 3, 4 

  • If the question does not say x is an integer, do not assume x is an integer!

    • x > 3 actually means any value greater than 3

      • 3.1 is possible

      • pi = 3.14159… is possible

  • You may be asked to find the smallest or largest integer

    • The smallest integer that satisfies x > 6.5 is 7

Worked Example

List all the integer values of x that satisfy 

negative 4 less or equal than x less than 2

Integer values are whole numbers 
-4 ≤ x shows that x includes -4, so this is the first integer

x = -4

x < 2 shows that x does not include 2
Therefore the last integer is x = 1

x = 1

For the answer, list all the integers from -4 to 1
Remember integers can be zero and negative

bold italic x bold equals bold minus bold 4 bold comma bold space bold minus bold 3 bold comma bold space bold minus bold 2 bold comma bold space bold minus bold 1 bold comma bold space bold 0 bold comma bold space bold 1

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注