Maths Gcse Aqa Foundation
-
Scatter-Graphs-And-Correlation Aqa Foundation2 主题
-
Statistical-Diagrams Aqa Foundation6 主题
-
Averages-Ranges-And-Data Aqa Foundation7 主题
-
Tree-Diagrams-And-Combined-Probability Aqa Foundation2 主题
-
Simple-Probability-Diagrams Aqa Foundation4 主题
-
Transformations Aqa Foundation4 主题
-
Vectors Aqa Foundation3 主题
-
Pythagoras-And-Trigonometry Aqa Foundation5 主题
-
Congruence-Similarity-And-Geometrical-Proof Aqa Foundation5 主题
-
Volume-And-Surface-Area Aqa Foundation3 主题
-
Circles-Arcs-And-Sectors Aqa Foundation3 主题
-
Area-And-Perimeter Aqa Foundation4 主题
-
Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation5 主题
-
2D-And-3D-Shapes Aqa Foundation4 主题
-
Angles-In-Polygons-And-Parallel-Lines Aqa Foundation5 主题
-
Symmetry-And-Shapes Aqa Foundation4 主题
-
Exchange-Rates-And-Best-Buys Aqa Foundation2 主题
-
Standard-And-Compound-Units Aqa Foundation5 主题
-
Direct-And-Inverse-Proportion Aqa Foundation1 主题
-
Ratio-Problem-Solving Aqa Foundation2 主题
-
Sequences Aqa Foundation4 主题
-
Solving-Inequalities Aqa Foundation3 主题
-
Real-Life-Graphs Aqa Foundation4 主题
-
Graphs-Of-Functions Aqa Foundation3 主题
-
Linear-Graphs Aqa Foundation3 主题
-
Coordinate-Geometry Aqa Foundation3 主题
-
Functions Aqa Foundation1 主题
-
Forming-And-Solving-Equations Aqa Foundation2 主题
-
Simultaneous-Equations Aqa Foundation1 主题
-
Solving-Quadratic-Equations Aqa Foundation1 主题
-
Linear-Equations Aqa Foundation3 主题
-
Algebraic-Reasoning Aqa Foundation1 主题
-
Rearranging-Formulas Aqa Foundation1 主题
-
Introduction Aqa Foundation10 主题
-
Relative-And-Expected-Frequency Aqa Foundation
-
Sample-Space-Diagrams Aqa Foundation
-
Basic-Probability Aqa Foundation
-
Sharing-In-A-Ratio Aqa Foundation
-
Equivalent-And-Simplified-Ratios Aqa Foundation
-
Introduction-To-Ratios Aqa Foundation
-
Collecting-Like-Terms Aqa Foundation
-
Substitution Aqa Foundation
-
Algebraic-Vocabulary Aqa Foundation
-
Algebraic-Notation Aqa Foundation
-
Relative-And-Expected-Frequency Aqa Foundation
-
Factorising Aqa Foundation3 主题
-
Expanding-Brackets Aqa Foundation2 主题
-
Algebraic-Roots-And-Indices Aqa Foundation1 主题
-
Using-A-Calculator Aqa Foundation1 主题
-
Exact-Values Aqa Foundation1 主题
-
Rounding-Estimation-And-Error-Intervals Aqa Foundation4 主题
-
Fractions-Decimals-And-Percentages Aqa Foundation2 主题
-
Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation4 主题
-
Percentages Aqa Foundation5 主题
-
Fractions Aqa Foundation6 主题
-
Powers-Roots-And-Standard-Form Aqa Foundation4 主题
-
Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation6 主题
-
Number-Operations Aqa Foundation9 主题
-
Counting-Principles Aqa Foundation
-
Related-Calculations Aqa Foundation
-
Multiplication-And-Division Aqa Foundation
-
Addition-And-Subtraction Aqa Foundation
-
Money-Calculations Aqa Foundation
-
Negative-Numbers Aqa Foundation
-
Place-Value Aqa Foundation
-
Order-Of-Operations-Bidmasbodmas Aqa Foundation
-
Mathematical-Operations Aqa Foundation
-
Counting-Principles Aqa Foundation
Drawing-Straight-Line-Graphs Aqa Foundation
Exam code:8300
Drawing linear graphs
How do I draw a straight line from a table of values?
-
You may be given a table of values with no equation
-
Use the x and y values to form a point with coordinates (x , y )
-
Then plot these points
-
Use a ruler to draw a straight line through them
-
All points should lie on the line
-
-
-
For example
-
The points below are (-3, 0), (-2, 2), … etc
-
|
|
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
|
|
0 |
2 |
4 |
6 |
8 |
10 |
12 |
How do I draw a straight line using y = mx + c?
-
Use the equation to create your own table of values
-
Choose points that are spread out across the axes given
-
-
For example, plot y = 2x + 1 on axes from x = 0 to x = 10
-
Substitute in x = 0, x = 5 and x = 10 to get y coordinates
-
Then plot those points
-
-
|
|
0 |
5 |
10 |
|
|
1 |
11 |
21 |
How do I draw a straight line without using a table of values?
-
Start at the y-intercept, c
-
Then, for every 1 unit to the right, go up m units
-
m is the gradient
-
If m is negative, go down
-
If m is a fraction, remember that gradient is change in y divided by change in x
-
A gradient of
would be
units up for every
units right
-
-
-
This creates a sequence of points which you can then join up
-
Be careful of counting squares if axes have different scales
-
1 unit might not be 1 square
-
-
Examiner Tips and Tricks
-
Always plot at least 3 points (just in case one of your end points is wrong!)
Worked Example
On the same set of axes, draw the graphs of and <img alt=”y equals negative 3 over 5 x plus 3″ data-mathml='<math ><semantics><mrow><mi>y</mi><mo>=</mo><mo>-</mo><mfrac><mn>3</mn><mn>5</mn></mfrac><mi>x</mi><mo>+</mo><mn>3</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”47″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2247%22%20width%3D%2298%22%20wrs%3Abaseline%3D%2230%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3Ey%3C%2Fmi%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmfrac%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmn%3E5%3C%2Fmn%3E%3C%2Fmfrac%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E3%3C%2Fmn%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math190bc3972c7934354efb2af01e7’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAERjdnQgDVUNBwAAAWAAAAA6Z2x5ZoPi2VsAAAGcAAABdWhlYWQQC2qxAAADFAAAADZoaGVhCGsXSAAAA0wAAAAkaG10eE2rRkcAAANwAAAAEGxvY2EAHTwYAAADgAAAABRtYXhwBT0FPgAAA5QAAAAgbmFtZaBxlY4AAAO0AAABn3Bvc3QB9wD6AAAFVAAAACBwcmVwa1uragAABXQAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEADAAAAAIAAgAAgAAACsAPSIS%2F%2F8AAAArAD0iEv%2F%2F%2F9b%2Fxd3xAAEAAAAAAAAAAAAAAVQDLACAAQAAVgAqAlgCHgEOASwCLABaAYACgACgANQAgAAAAAAAAAArAFUAgACrANUBAAErAAcAAAACAFUAAAMAA6sAAwAHAAAzESERJSERIVUCq%2F2rAgD%2BAAOr%2FFVVAwAAAQCAAFUC1QKrAAsASQEYsgwBARQTELEAA%2FaxAQT1sAo8sQMF9bAIPLEFBPWwBjyxDQPmALEAABMQsQEG5LEBARMQsAU8sQME5bELBfWwBzyxCQTlMTATIREzESEVIREjESGAAQBVAQD%2FAFX%2FAAGrAQD%2FAFb%2FAAEAAAIAgADrAtUCFQADAAcAZRgBsAgQsAbUsAYQsAXUsAgQsAHUsAEQsADUsAYQsAc8sAUQsAQ8sAEQsAI8sAAQsAM8ALAIELAG1LAGELAH1LAHELAB1LABELAC1LAGELAFPLAHELAEPLABELAAPLACELADPDEwEyE1IR0BITWAAlX9qwJVAcBV1VVVAAEAgAFVAtUBqwADADAYAbAEELEAA%2FawAzyxAgf1sAE8sQUD5gCxAAATELEABuWxAAETELABPLEDBfWwAjwTIRUhgAJV%2FasBq1YAAAAAAQAAAAEAANV4zkFfDzz1AAMEAP%2F%2F%2F%2F%2FWOhNz%2F%2F%2F%2F%2F9Y6E3MAAP8gBIADqwAAAAoAAgABAAAAAAABAAAD6P9qAAAXcAAA%2F7YEgAABAAAAAAAAAAAAAAAAAAAABANSAFUDVgCAA1YAgANWAIAAAAAAAAAAKAAAAKEAAAErAAABdQABAAAABABeAAUAAAAAAAIAgAQAAAAAAAQAAN4AAAAAAAAAFQECAAAAAAAAAAEAEgAAAAAAAAAAAAIADgASAAAAAAAAAAMAMAAgAAAAAAAAAAQAEgBQAAAAAAAAAAUAFgBiAAAAAAAAAAYACQB4AAAAAAAAAAgAHACBAAEAAAAAAAEAEgAAAAEAAAAAAAIADgASAAEAAAAAAAMAMAAgAAEAAAAAAAQAEgBQAAEAAAAAAAUAFgBiAAEAAAAAAAYACQB4AAEAAAAAAAgAHACBAAMAAQQJAAEAEgAAAAMAAQQJAAIADgASAAMAAQQJAAMAMAAgAAMA
Responses