Back to 课程

Maths Gcse Aqa Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Foundation
    2 主题
  2. Statistical-Diagrams Aqa Foundation
    6 主题
  3. Averages-Ranges-And-Data Aqa Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Aqa Foundation
    2 主题
  5. Simple-Probability-Diagrams Aqa Foundation
    4 主题
  6. Transformations Aqa Foundation
    4 主题
  7. Vectors Aqa Foundation
    3 主题
  8. Pythagoras-And-Trigonometry Aqa Foundation
    5 主题
  9. Congruence-Similarity-And-Geometrical-Proof Aqa Foundation
    5 主题
  10. Volume-And-Surface-Area Aqa Foundation
    3 主题
  11. Circles-Arcs-And-Sectors Aqa Foundation
    3 主题
  12. Area-And-Perimeter Aqa Foundation
    4 主题
  13. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation
    5 主题
  14. 2D-And-3D-Shapes Aqa Foundation
    4 主题
  15. Angles-In-Polygons-And-Parallel-Lines Aqa Foundation
    5 主题
  16. Symmetry-And-Shapes Aqa Foundation
    4 主题
  17. Exchange-Rates-And-Best-Buys Aqa Foundation
    2 主题
  18. Standard-And-Compound-Units Aqa Foundation
    5 主题
  19. Direct-And-Inverse-Proportion Aqa Foundation
    1 主题
  20. Ratio-Problem-Solving Aqa Foundation
    2 主题
  21. Sequences Aqa Foundation
    4 主题
  22. Solving-Inequalities Aqa Foundation
    3 主题
  23. Real-Life-Graphs Aqa Foundation
    4 主题
  24. Graphs-Of-Functions Aqa Foundation
    3 主题
  25. Linear-Graphs Aqa Foundation
    3 主题
  26. Coordinate-Geometry Aqa Foundation
    3 主题
  27. Functions Aqa Foundation
    1 主题
  28. Forming-And-Solving-Equations Aqa Foundation
    2 主题
  29. Simultaneous-Equations Aqa Foundation
    1 主题
  30. Solving-Quadratic-Equations Aqa Foundation
    1 主题
  31. Linear-Equations Aqa Foundation
    3 主题
  32. Algebraic-Reasoning Aqa Foundation
    1 主题
  33. Rearranging-Formulas Aqa Foundation
    1 主题
  34. Introduction Aqa Foundation
    10 主题
  35. Factorising Aqa Foundation
    3 主题
  36. Expanding-Brackets Aqa Foundation
    2 主题
  37. Algebraic-Roots-And-Indices Aqa Foundation
    1 主题
  38. Using-A-Calculator Aqa Foundation
    1 主题
  39. Exact-Values Aqa Foundation
    1 主题
  40. Rounding-Estimation-And-Error-Intervals Aqa Foundation
    4 主题
  41. Fractions-Decimals-And-Percentages Aqa Foundation
    2 主题
  42. Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation
    4 主题
  43. Percentages Aqa Foundation
    5 主题
  44. Fractions Aqa Foundation
    6 主题
  45. Powers-Roots-And-Standard-Form Aqa Foundation
    4 主题
  46. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation
    6 主题
  47. Number-Operations Aqa Foundation
    9 主题
课 Progress
0% Complete

Exam code:8300

Collecting like terms

What happens if there is more than one term?

  • Terms can be added and subtracted 

    • The numbers in front of the letters are called coefficients

  • Each term has a positive or negative sign in front

    • In 2x – 3y the sign of the x term is positive and the sign of the term is negative

  • Subtractions can be thought of as adding a negative 

    • 2x – 3y is the same as 2x + (-3y)

      • Just like 20 – 30 is the same as 20 + (-30)

  • The order of two terms can be swapped, but the signs must move with their terms 

    • 2x – 3y is the same as -3y + 2x

      • A plus is now needed in front of the 2x

      • Just like 20 – 30 is the same as -30 + 20

  • If no number appears in front of a term, then its number is 1

    • is the same as 1x

What is a like term?

  • Like terms are terms with exactly the same letters and powers

    • The numbers in front can be different

      • For example:

      • 2x and 3x

      • 4x2 and 6x2

      • 5xy and -7xy

    • These are not like terms:

      • 2x and 3y (different letters)

      • 4x2 and 6x4 (different powers)

      • 5xy and 7xyz (different letters)

  • Remember multiplication can be done in any order

    • xy and yx  are like terms

      • So are 2xy and 3yx

How do I collect like terms?

  • Collecting like terms means simplifying by adding or subtracting the numbers in front 

    • 2x + 3x becomes 5x

    • 4y – 10 becomes -6y

      • A negative sign is needed here

  • If there are different types of like terms, collect them separately

    • For 2x + 4y + 5x – 3y 

      • Collecting the x‘s gives 2x + 5x = 7x

      • Collecting the y‘s gives 4y – 3y = y

      • The answer is 7x + y

Examiner Tips and Tricks

  • Don’t leave terms like 1x in your final answer in an exam – always simplify them to just x.

Worked Example

Simplify

8 a minus 5 b minus 6 a plus 4 b

 Collect the a terms first

8 a minus 6 a equals 2 a 

Then collect the b terms
Don’t forget the minus sign in front of the 5b

negative 5 b plus 4 b equals negative b 

Add together the two answers

<img alt=”2 a plus negative b” data-mathml='<math ><semantics><mrow><mn >2</mn><mi >a</mi><mo >+</mo><mo >-</mo><mi >b</mi></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ data-type=”working” height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%2263%22%20wrs%3Abaseline%3D%2216%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmn%20mathcolor%3D%22%23000000%22%3E2%3C%2Fmn%3E%3Cmi%20mathcolor%3D%22%23000000%22%3Ea%3C%2Fmi%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E%2B%3C%2Fmo%3E%3Cmo%20mathcolor%3D%22%23000000%22%3E-%3C%2Fmo%3E%3Cmi%20mathcolor%3D%22%23000000%22%3Eb%3C%2Fmi%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1f49eb453fa539158a42c727cab’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADxjdnQgDVUNBwAAAVgAAAA6Z2x5ZoPi2VsAAAGUAAAA62hlYWQQC2qxAAACgAAAADZoaGVhCGsXSAAAArgAAAAkaG10eE2rRkcAAALcAAAADGxvY2EAHTwYAAAC6AAAABBtYXhwBT0FPgAAAvgAAAAgbmFtZaBxlY4AAAMYAAABn3Bvc3QB9wD6AAAEuAAAACBwcmVwa1uragAABNgAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACgAAAAGAAQAAQACACsiEv%2F%2FAAAAKyIS%2F%2F%2F%2F1t3wAAEAAAAAAAAAAAFUAywAgAEAAFYAKgJYAh4BDgEsAiwAWgGAAoAAoADUAIAAAAAAAAAAKwBVAIAAqwDVAQABKwAHAAAAAgBVAAADAAOrAAMABwAAMxEhESUhESFVAqv9qwIA%2FgADq%2FxVVQMAAAEAgABVAtUCqwALAEkBGLIMAQEUExCxAAP2sQEE9bAKPLEDBfWwCDyxBQT1sAY8sQ0D5gCxAAATELEBBuSxAQETELAFPLEDBOWxCwX1sAc8sQkE5TEwEyERMxEhFSERIxEhgAEAVQEA%2FwBV%2FwABqwEA%2FwBW%2FwABAAABAIABVQLVAasAAwAwGAGwBBCxAAP2sAM8sQIH9bABPLEFA%2BYAsQAAExCxAAblsQABExCwATyxAwX1sAI8EyEVIYACVf2rAatWAAABAAAAAQAA1XjOQV8PPPUAAwQA%2F%2F%2F%2F%2F9Y6E3P%2F%2F%2F%2F%2F1joTcwAA%2FyAEgAOrAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2FtgSAAAEAAAAAAAAAAAAAAAAAAAADA1IAVQNWAIADVgCAAAAAAAAAACgAAAChAAAA6wABAAAAAwBeAAUAAAAAAAIAgAQAAAAAAAQAAN4AAAAAAAAAFQECAAAAAAAAAAEAEgAAAAAAAAAAAAIADgASAAAAAAAAAAMAMAAgAAAAAAAAAAQAEgBQAAAAAAAAAAUAFgBiAAAAAAAAAAYACQB4AAAAAAAAAAgAHACBAAEAAAAAAAEAEgAAAAEAAAAAAAIADgASAAEAAAAAAAMAMAAgAAEAAAAAAAQAEgBQAAEAAAAAAAUAFgBiAAEAAAAAAAYACQB4AAEAAAAAAAgAHAC

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注