Back to 课程

Maths Gcse Aqa Foundation

0% Complete
0/0 Steps
  1. Scatter-Graphs-And-Correlation Aqa Foundation
    2 主题
  2. Statistical-Diagrams Aqa Foundation
    6 主题
  3. Averages-Ranges-And-Data Aqa Foundation
    7 主题
  4. Tree-Diagrams-And-Combined-Probability Aqa Foundation
    2 主题
  5. Simple-Probability-Diagrams Aqa Foundation
    4 主题
  6. Transformations Aqa Foundation
    4 主题
  7. Vectors Aqa Foundation
    3 主题
  8. Pythagoras-And-Trigonometry Aqa Foundation
    5 主题
  9. Congruence-Similarity-And-Geometrical-Proof Aqa Foundation
    5 主题
  10. Volume-And-Surface-Area Aqa Foundation
    3 主题
  11. Circles-Arcs-And-Sectors Aqa Foundation
    3 主题
  12. Area-And-Perimeter Aqa Foundation
    4 主题
  13. Bearings-Scale-Drawing-Constructions-And-Loci Aqa Foundation
    5 主题
  14. 2D-And-3D-Shapes Aqa Foundation
    4 主题
  15. Angles-In-Polygons-And-Parallel-Lines Aqa Foundation
    5 主题
  16. Symmetry-And-Shapes Aqa Foundation
    4 主题
  17. Exchange-Rates-And-Best-Buys Aqa Foundation
    2 主题
  18. Standard-And-Compound-Units Aqa Foundation
    5 主题
  19. Direct-And-Inverse-Proportion Aqa Foundation
    1 主题
  20. Ratio-Problem-Solving Aqa Foundation
    2 主题
  21. Sequences Aqa Foundation
    4 主题
  22. Solving-Inequalities Aqa Foundation
    3 主题
  23. Real-Life-Graphs Aqa Foundation
    4 主题
  24. Graphs-Of-Functions Aqa Foundation
    3 主题
  25. Linear-Graphs Aqa Foundation
    3 主题
  26. Coordinate-Geometry Aqa Foundation
    3 主题
  27. Functions Aqa Foundation
    1 主题
  28. Forming-And-Solving-Equations Aqa Foundation
    2 主题
  29. Simultaneous-Equations Aqa Foundation
    1 主题
  30. Solving-Quadratic-Equations Aqa Foundation
    1 主题
  31. Linear-Equations Aqa Foundation
    3 主题
  32. Algebraic-Reasoning Aqa Foundation
    1 主题
  33. Rearranging-Formulas Aqa Foundation
    1 主题
  34. Introduction Aqa Foundation
    10 主题
  35. Factorising Aqa Foundation
    3 主题
  36. Expanding-Brackets Aqa Foundation
    2 主题
  37. Algebraic-Roots-And-Indices Aqa Foundation
    1 主题
  38. Using-A-Calculator Aqa Foundation
    1 主题
  39. Exact-Values Aqa Foundation
    1 主题
  40. Rounding-Estimation-And-Error-Intervals Aqa Foundation
    4 主题
  41. Fractions-Decimals-And-Percentages Aqa Foundation
    2 主题
  42. Simple-And-Compound-Interest-Growth-And-Decay Aqa Foundation
    4 主题
  43. Percentages Aqa Foundation
    5 主题
  44. Fractions Aqa Foundation
    6 主题
  45. Powers-Roots-And-Standard-Form Aqa Foundation
    4 主题
  46. Types-Of-Number-Prime-Factors-Hcf-And-Lcm Aqa Foundation
    6 主题
  47. Number-Operations Aqa Foundation
    9 主题
课 Progress
0% Complete

Exam code:8300

Types of graphs

What graphs do I need to know?

  • You need to be able to recognise the following lines:

    •  Straight lines

      • y = mx + c

      • Such as y = 3 + 2, y = 5 – 1, …

      • Two important ones are y = x and y = –x

    • Horizontal lines

      • y = c

      • Such as y = 4, y = -10, …

    • Vertical lines

      • x = k

      • Such as x = 2, x = -1, …

  • You need to be able to recognise quadratic graphs

    • y = x2

    • y = –x2

    • y = ax2 + bx + c

  • You need to be able to recognise simple cubic graphs

    • y = x3

    • y = –x3

    • y = ax3 + bx2x + c

  • You also need to be able to recognise reciprocal graphs

    • y equals 1 over x, where x not equal to 0

Example of graphs including linear, quadratic, cubic and reciprocal

What does a quadratic graph look like?

  • The equation of a quadratic graph is y = ax2 + bx + c

  • A quadratic graph has either a u-shape or an n-shape

    • This type of shape is called a parabola 

  • u-shapes are called positive quadratics

    • because the number in front of x2 is positive

      • For example, y = 2x2 + 3x + 4

  • n-shapes are called negative quadratics

    • because the number in front of x2 is negative

      • For example, y = -3x2 + 2x + 4

  • You can plot quadratic graphs using a table of values
     

Positive and negative quadratic graphs

What does a cubic graph look like?

  • The equation of a cubic graph is yax3bx2cx + d

  • A cubic graph can have two points where it changes direction (turning points)

  • A positive cubic goes uphill (from the bottom left to the top right)

    • The number in front of x3 is positive

      • For example, y = x3 – 3x2 + 2x + 1

  • A negative cubic goes downhill (from the top left to the bottom right) 

    • The number in front of x3 is negative

      • For example, y = –x3 + 2x2 – x + 5

  • You can plot cubic graphs using a table of values

A positive cubic graph where a>0 and a negative cubic graph where a<0

What does a reciprocal graph look like?

  • The equation of the basic reciprocal graph is y equals 1 over x

    • You cannot substitute in x = 0 (division by zero is not allowed) 

      • <img alt=”x not equal to 0″ data-mathml='<math ><semantics><mrow><mi>x</mi><mo>&#8800;</mo><mn>0</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true}</annotation></semantics></math>’ height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注