课 Progress
0% Complete

PGFs of X+Y

How do I find the PGF of X + Y?

  • If Z equals X plus Y then straight G subscript Z open parentheses t close parentheses equals straight G subscript X open parentheses t close parentheses cross times straight G subscript Y open parentheses t close parentheses

    • Multiply the PGFs together

  • This only works if X and Y are independent distributions

How do I find the PGF of a repeatedly used distribution?

  • Let X be a discrete random variable with PGF straight G subscript X open parentheses t close parentheses

  • If Z equals X subscript 1 plus X subscript 2 plus... plus X subscript n where each X subscript i space end subscriptis its own independent X distribution

    • Then straight G subscript Z open parentheses t close parentheses equals straight G subscript X subscript 1 end subscript open parentheses t close parentheses straight G subscript X subscript 2 end subscript open parentheses t close parentheses... straight G subscript X subscript n end subscript open parentheses t close parentheses equals open square brackets straight G subscript X open parentheses t close parentheses close square brackets to the power of n

  • For example

    • X could be the winnings on a game played once

    • X subscript 1 comma space X subscript 2... comma X subscript 5 represent five different winnings when played five times

      • assuming each game is independent of the last

    • The winnings after five games has the PGF open square brackets straight G subscript X open parentheses t close parentheses close square brackets to the power of 5

How do I prove that the sum of two independent Poisson distributions is Poisson?

  • If X tilde Po open parentheses lambda close parentheses and Y tilde Po open parentheses mu close parentheses are independent then

    • straight G subscript X open parentheses t close parentheses equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent and straight G subscript Y open parentheses t close parentheses equals straight e to the power of straight mu open parentheses t minus 1 close parentheses end exponent

  • So Z equals X plus Y has the PGF straight G subscript Z open parentheses t close parentheses equals straight G subscript X open parentheses t close parentheses straight G subscript Y open parentheses t close parentheses equals straight e to the power of lambda open parentheses t minus 1 close parentheses end exponent straight e to the power of mu open parentheses t minus 1 close parentheses end exponent

    • Add the powers in the exponentials

    • Factorise out open parentheses t minus 1 close parentheses

    • So straight G subscript Z open parentheses t close parentheses equals straight e to the power of open parentheses lambda plus mu close parentheses open parentheses t minus 1 close parentheses end exponent

  • This is exactly the PGF for the distribution of Po open parentheses lambda plus mu close parentheses

    • So the sum of two independent Poisson distributions is a Poisson distribution

Examiner Tips and Tricks

  • straight G subscript Z open parentheses t close parentheses equals straight G subscript X open parentheses t close parentheses cross times straight G subscript Y open parentheses t close parentheses is given in the Formulae Booklet

Worked Example

A fair three-sided spinner, labelled 2, 4 and 8, is spun. A biased coin, labelled 4 and 6, is flipped, where there is a 25% chance of landing on a 4.

Use probability generating functions to find the probability that the sum of the scores is 8.

pgfs-of-sums-1
pgfs-of-sums-2

PGFs of aX+b

How do I find the PGF of aX + b?

  • LetY equals a X plus b be a linear transformation of X

  • Then straight G subscript Y open parentheses t close parentheses equals t to the power of b straight G subscript X open parentheses t to the power of a close parentheses

    • Replace t with t to the power of a

    • Multiply the PGF by t to the power of b

  • For example

    • Take straight G subscript X open parentheses t close parentheses equals open parentheses 0.9 plus 0.1 t close parentheses to the power of 10

    • Let Y equals 8 X plus 3

    • So straight G subscript Y open parentheses t close parentheses equals t cubed open parentheses 0.9 plus 0.1 t to the power of 8 close parentheses to the power of 10

  • The formula comes from

Examiner Tips and Tricks

  • Beware, you need to learn straight G subscript Y open parentheses t close parentheses equals t to the power of b straight G subscript X open parentheses t to the power of a close parentheses as it is not given in the Formulae Booklet

Worked Example

The discrete random variable X has a probability generating function given by

straight G subscript X open parentheses t close parentheses equals fraction numerator t over denominator 5 minus 4 t end fraction

Find and simplify the probability generating function of Y, where Y equals 2 open parentheses X plus 5 close parentheses.

pgfs-of-ax-and-b

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注