课 Progress
0% Complete

E(X) of PGFs

How do I find E(X) of a PGF?

  • straight E open parentheses X close parentheses equals straight G subscript X apostrophe open parentheses 1 close parentheses

    • Differentiate the PGF and substitute in t equals 1

  • This is because 

    • straight G subscript X open parentheses t close parentheses equals straight E open parentheses t to the power of X close parentheses equals sum from blank to blank of space t to the power of x space straight P open parentheses X equals x close parentheses

    • So straight G subscript X apostrophe open parentheses t close parentheses equals stack fraction numerator straight d over denominator straight d t end fraction open square brackets sum from blank to blank of space t to the power of x space straight P open parentheses X equals x close parentheses close square brackets equals sum with blank below and blank on top space x t to the power of x minus 1 end exponent space straight P open parentheses X equals x close parentheses

    • Substituting t equals 1 gives straight G subscript X apostrophe open parentheses 1 close parentheses equals sum from blank to blank of space x space straight P open parentheses X equals x close parentheses space equals space straight E open parentheses X close parentheses

  • You may need the chain, product or quotient rule.

Examiner Tips and Tricks

  • straight E open parentheses X close parentheses equals straight G apostrophe subscript X open parentheses 1 close parentheses is given in the Formulae Booklet

Worked Example

The probability generating function for a discrete random variable X is given by

straight G subscript X open parentheses t close parentheses equals 1 over 81 t cubed open parentheses 1 plus 2 t close parentheses to the power of 4

Find straight E open parentheses X close parentheses.

ex-of-pgfs

Var(X) of PGFs

How do I find Var(X) of a PGF?

  • The formula is Var open parentheses X close parentheses equals straight G subscript X apostrophe apostrophe open parentheses 1 close parentheses plus straight G subscript X apostrophe open parentheses 1 close parentheses minus open square brackets straight G subscript X apostrophe open parentheses 1 close parentheses close square brackets squared

  • You may need the chain, product or quotient rule.

  • The first two terms in the formula are straight E open parentheses X squared close parentheses

    • straight E open parentheses X squared close parentheses equals straight G subscript X apostrophe apostrophe open parentheses 1 close parentheses plus straight G subscript X apostrophe open parentheses 1 close parentheses

  • The formula comes from 

    • straight G subscript X open parentheses t close parentheses equals straight E open parentheses t to the power of X close parentheses equals sum from blank to blank of space t to the power of x space straight P open parentheses X equals x close parentheses

    • So straight G subscript X apostrophe open parentheses t close parentheses equals stack fraction numerator straight d over denominator straight d t end fraction open square brackets sum from blank to blank of space t to the power of x space straight P open parentheses X equals x close parentheses close square brackets equals sum with blank below and blank on top space x t to the power of x minus 1 end exponent space straight P open parentheses X equals x close parentheses

      • Recall straight G subscript X apostrophe open parentheses 1 close parentheses equals sum space x space straight P open parentheses X equals x close parentheses equals straight E open parentheses X close parentheses

    • And straight G subscript X apostrophe apostrophe open parentheses t close parentheses equals stack fraction numerator straight d over denominator straight d t end fraction open square brackets sum from blank to blank of space x t to the power of x minus 1 end exponent space straight P open parentheses X equals x close parentheses close square brackets equals sum with blank below and blank on top space x open parentheses x minus 1 close parentheses t to the power of x minus 2 end exponent space straight P open parentheses X equals x close parentheses

    • Substituting t equals 1 gives straight G subscript X apostrophe apostrophe open parentheses 1 close parentheses equals sum from blank to blank of space x open parentheses x minus 1 close parentheses space straight P open parentheses X equals x close parentheses space equals space straight E open parentheses X open parentheses X minus 1 close parentheses close parentheses equals space straight E thin space open parentheses X squared close parentheses minus straight E open parentheses X close parentheses

    • Make straight E open parentheses X squared close parentheses the subject

      • straight E open parentheses X squared close parentheses equals straight G subscript X apostrophe apostrophe open parentheses 1 close parentheses plus straight E open parentheses X close parentheses

    • Then substitute it into Var open parentheses X close parentheses equals straight E open parentheses X squared close parentheses minus open parentheses straight E open parentheses X close parentheses close parentheses squared

    • And replace straight E open parentheses X close parentheses with straight G subscript X apostrophe open parentheses 1 close parentheses

Examiner Tips and Tricks

  • Var open parentheses X close parentheses equals straight G subscript X apostrophe apostrophe open parentheses 1 close parentheses plus straight G subscript X apostrophe open parentheses 1 close parentheses minus open square brackets straight G subscript X apostrophe open parentheses 1 close parentheses close square brackets squared is given in the Formulae Booklet

Worked Example

The probability generating function for a discrete random variable, X, is given by 

straight G subscript X open parentheses t close parentheses equals 0.2 plus 0.4 t plus 0.3 t to the power of 4 plus 0.1 t to the power of 5

Find Var open parentheses X close parentheses.

varx-of-pgfs

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注