课 Progress
0% Complete

Problem solving with DRVs

How do I find DRVs from worded contexts?

  • Introduce a capital letter, X, to represent numerical values

    • Make sure you know exactly what X represents

  • List all the values X can take

  • Calculate the probability for each value of X

  • Put this information into a table

    x

    straight P open parentheses X equals x close parentheses

  • If asked to comment on results 

    • Find straight E open parentheses X close parentheses to talk about the average result

    • Find Var open parentheses X close parentheses to talk about the spread of results

What if they introduce a new independent variable?

  • Sometimes questions have two independent DRVs, X and Y

    • e.g. X may be a coin and Y may be a 3-sided spinner

  • Construct their tables

    x

    2

    4

    straight P open parentheses X equals x close parentheses

    0.25

    0.75

    y

    0

    2

    4

    straight P open parentheses Y equals y close parentheses

    0.1

    0.2

    0.7

  • To find straight P open parentheses X plus Y equals 4 close parentheses

    • List possibilities

      • X equals 2 comma space Y equals 2 or X equals 4 comma space Y equals 0

    • Multiply probabilities then add

      • 0.25 × 0.2 + 0.75 × 0.1

  • To find straight E open parentheses X plus Y close parentheses

    • Either construct a full table for all possible values that X plus Y can take

      • There may be a lot!

      • Then work out expectation from the table

    • Or use the formula straight E open parentheses X plus Y close parentheses equals straight E open parentheses X close parentheses plus straight E open parentheses Y close parentheses

      • Find straight E open parentheses X close parentheses and straight E open parentheses Y close parentheses from their tables above

  • Note that, if X and Y are independent

    • Then straight E open parentheses X Y close parentheses equals straight E open parentheses X close parentheses straight E open parentheses Y close parentheses

    • The expectation of a product is the product of the expectation

  • These ideas can be applied when repeatedly using the same distribution, X

    • For example, flipping a coin, then flipping it again

    • Create independent random variables X subscript 1 comma space X subscript 2 space end subscript comma space...

What if they introduce a new dependent variable?

  • Sometimes questions introduce a new variable, Y, which depends on an old variable, X

    x

    -3

    1

    2

    3

    straight P open parentheses X equals x close parentheses

    0.25

    0.25

    0.25

    0.25

    • Let Y equals 9 minus X squared

      • List values of y

      • They have the same probabilities as X (as Y depends on X)

      • y

        0

        8

        5

        0

        straight P open parentheses Y equals y close parentheses

        0.25

        0.25

        0.25

        0.25

        Simplify (reorder and group values together)

      y

      0

      5

      8

      P open parentheses Y equals y close parentheses

      0.5

      0.25

      0.25

  • You can use straight E open parentheses X plus Y close parentheses equals straight E open parentheses X close parentheses plus straight E open parentheses Y close parentheses

    • calculate straight E open parentheses X close parentheses and straight E open parentheses Y close parentheses from their tables

  • You cannot use straight E open parentheses X Y close parentheses equals straight E open parentheses X close parentheses straight E open parentheses Y close parentheses if Y depends on X 

    • To find straight E open parentheses X Y close parentheses draw the table for all possible values of X Y

      x y

      -3 × 0

      1 × 8

      2 × 5

      3 × 0

      straight P open parentheses X equals x close parentheses

      0.25

      0.25

      0.25

      0.25

      • Probabilities are the same as X (as Y depends on X)

      • Then calculate expectation from this table

    • Alternatively, substitute in Y

      • X Y equals X open parentheses 9 minus X squared close parentheses equals 9 X minus X cubed

      • So straight E open parentheses 9 X minus X cubed close parentheses equals 9 straight E open parentheses X close parentheses minus straight E open parentheses X cubed close parentheses

      • Find straight E open parentheses X close parentheses from the table of X

      • Find straight E open parentheses X cubed close parentheses from the table of X (by cubing the xvalues)

What if there is conditional probability?

  • Learn the conditional probability formula

    • straight P open parentheses A vertical line B close parentheses equals fraction numerator straight P open parentheses A intersection B close parentheses over denominator straight P open parentheses B close parentheses end fraction

    • For example, for integer values, the probability that X greater than 5 given that X less or equal than 10

      • P open parentheses X greater than 5 vertical line X less or equal than 10 close parentheses equals fraction numerator P open parentheses 6 less or equal than X less or equal than 10 close parentheses over denominator P open parentheses X less or equal than 10 close parentheses end fraction

Examiner Tips and Tricks

  • Always draw out tables of values for each DRV – they really help in the exam!

Worked Example

In a game, you can earn 2, 5 or 6 points. There is a 50% chance of earning 6 points and an equal chance of earning either 2 or 5 points.

a) Find the probability of earning more than 9 points when playing the game twice.

problem-solving-with-drvs-a1
problem-solving-with-drvs-a2

The amount of money (£) won in a game is found by multiplying the number of points, X, by the variable Y, where Y equals 3 if X less than 5 or Y equals X minus 3 if X greater or equal than 5.

b) Find the expected amount of money won per game.

problem-solving-with-drvs-part-b

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注