课 Progress
0% Complete

E(X) of DRVs

What does E(X) mean and how do I calculate E(X)?

  • straight E open parentheses X close parentheses means the expected value or the mean of a random variable X

    • The expected value does not need to be an obtainable value of X

    • For example: the expected value number of times a coin will land on tails when flipped 5 times is 2.5

  • For a discrete random variable, it is calculated by:

    • Multiplying each value of X with its corresponding probability

    • Adding all these terms together

straight E left parenthesis X right parenthesis equals sum x straight P left parenthesis X equals x right parenthesis

  • Look out for symmetrical distributions (where the values of X are symmetrical and their probabilities are symmetrical)

    • The mean of these is the same as the median

    • For example: if X can take the values 1, 5, 9 with probabilities 0.3, 0.4, 0.3 respectively then by symmetry the mean is 5

Worked Example

Daphne pays $15 to play a game where she wins a prize of $1, $5, $10 or $100. The random variable W represents the amount she wins and has the probability distribution shown in the following table:

w

1

5

10

100

straight P left parenthesis W equals w right parenthesis

0.35

0.5

0.05

0.1

  Calculate the expected value of Daphne’s prize.

expected-values-we

Var(X) of DRVs

How do I calculate E(X2)?

  • straight E open parentheses X squared close parentheses means the expected value or the mean of the random variable X squared

  • It is calculated by:

    • Squaring each value of X to get the values of X squared

    • Multiplying each value of X squared by its corresponding probability

    • Adding all these terms together

  • It’s formula is straight E open parentheses X close parentheses equals sum from blank to blank of x squared P open parentheses X equals x close parentheses

Is E(X²) equal to (E(X))²?

  • No!

  • straight E open parentheses X squared close parentheses is the mean of the squares of X

  • open parentheses straight E open parentheses X close parentheses close parentheses squared is the square of the mean of X

  • For example, if X = 1 or X = -1, both with probabilities of 0.5 then

    • the mean is 0 so open parentheses straight E open parentheses X close parentheses close parentheses squared = 02 = 0

    • but the squares of X are 1 and 1, so straight E open parentheses X squared close parentheses equals 1

What is Var(X) and how do I calculate Var(X)?

  • Var open parentheses X close parentheses means the variance of a random variable X

    • How spread out X values are from their mean

      • High Var open parentheses X close parentheses means more spread out

    • How consistent X values are around their mean

      • High Var open parentheses X close parentheses means more variability so less consistent

  • For any random variable this can be calculated using the formula

Var open parentheses X close parentheses equals straight E left parenthesis X squared right parenthesis minus left parenthesis straight E left parenthesis X right parenthesis right parenthesis squared

  • This is the mean of the squares of X minus the square of the mean of X

  • Var open parentheses X close parentheses is always positive

  • The standard deviation of a random variable X is square root of Var open parentheses X close parentheses end root

  • An alternative formula is Var open parentheses X close parentheses equals straight E open square brackets open parentheses X minus straight E open parentheses X close parentheses close parentheses squared close square brackets

    • The expected value of the squares of the distances from the mean

    • This is its formal definition, but less useful in practice

How do I find E(X2) if Var(X) and E(X) are known?

  • Rearrange the formula Var open parentheses X close parentheses equals straight E open parentheses X squared close parentheses minus open parentheses straight E open parentheses X close parentheses close parentheses to the power of 2 space end exponent

    • straight E open parentheses X squared close parentheses equals Var open parentheses X close parentheses plus open parentheses straight E open parentheses X close parentheses close parentheses squared

    • Then substitute in the values for Var open parentheses X close parentheses and straight E open parentheses X close parentheses

Examiner Tips and Tricks

  • Check if your answer makes sense:

    • The mean should fit within the range of the values of X.

    • The variance must be positive.

Worked Example

The discrete random variable X has the probability distribution shown in the following table:

x

2

3

5

7

straight P left parenthesis X equals x right parenthesis

0.1

0.3

0.2

0.4

(a) Find the value of straight E left parenthesis X right parenthesis.

3-1-2-ex-_-varx-discrete-we-solution_a

(b) Find the value of straight E left parenthesis X squared right parenthesis.

 

3-1-2-ex-_-varx-discrete-we-solution_b

(c) Find the value of Var left parenthesis X right parenthesis .

3-1-2-ex-_-varx-discrete-we-solution_c

E(g(X)) of DRVs

How do I calculate E(g(X))?

  • straight E open parentheses X squared close parentheses means sum from blank to blank of x to the power of 2 space end exponent straight P open parentheses X equals x close parentheses 

    • The expected value (mean) of X squared

    • X squared is a function of X

  • Let straight g open parentheses X close parentheses be any function of X

    • Then straight E open parentheses straight g open parentheses X close parentheses close parentheses equals sum from blank to blank of space straight g open parentheses x close parentheses straight P open parentheses X equals x close parentheses

    • Multiply values of straight g stretchy left parenthesis x stretchy right parenthesis by their corresponding probabilities

  • straight E open parentheses straight g open parentheses X close parentheses close parentheses does not mean substitute the value of straight E open parentheses X close parentheses into straight g open parentheses x close parentheses

    • straight E open parentheses straight g open parentheses X close parentheses close parentheses not equal to straight g open parentheses straight E open parentheses X close parentheses close parentheses

3-1-2-ex-_-varx-discrete-diagram-2

Worked Example

The random variable X has the following probability distribution.  

x

1

8

27

straight P open parentheses X equals x close parentheses

0.1

0.3

0.6

Determine which out of straight E open parentheses cube root of X close parentheses or straight E open parentheses ln space X close parentheses is greater.

egx-of-drvs

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注