Further Maths: Core Pure -Edexcel-A Level
-
complex-numbers-and-argand-diagrams6 主题
-
exponential-form-and-de-moivres-theorem4 主题
-
properties-of-matrices3 主题
-
transformations-using-matrices3 主题
-
roots-of-polynomials2 主题
-
series2 主题
-
maclaurin-series1 主题
-
hyperbolic-functions4 主题
-
volumes-of-revolution2 主题
-
methods-in-calculus5 主题
-
vector-lines4 主题
-
vector-planes4 主题
-
polar-coordinates2 主题
-
first-order-differential-equations3 主题
-
second-order-differential-equations2 主题
-
simple-harmonic-motion2 主题
-
proof-by-induction2 主题
shortest-distances—lines
Shortest distance between a point & a line
How do I find the shortest distance from a point to a line?
-
The shortest distance from any point to a line will always be the perpendicular distance
-
Given a line l with equation
and a point P not on l
-
The scalar product of the direction vector, b, and the vector in the direction of the shortest distance will be zero
-
-
The shortest distance can be found using the following steps:
-
STEP 1: Let the vector equation of the line be r and the point not on the line be P, then the point on the line closest to P will be the point F
-
The point F is sometimes called the foot of the perpendicular
-
-
STEP 2: Sketch a diagram showing the line l and the points P and F
-
The vector
will be perpendicular to the line l
-
-
STEP 3: Use the equation of the line to find the position vector of the point F in terms of λ
-
STEP 4: Use this to find the displacement vector
in terms of λ
-
STEP 5: The scalar product of the direction vector of the line l and the displacement vector
will be zero
-
Form an equation
and so
-
-
Responses