Back to 课程

Further Maths: Core Pure -Edexcel-A Level

0% Complete
0/0 Steps
  1. complex-numbers-and-argand-diagrams
    6 主题
  2. exponential-form-and-de-moivres-theorem
    4 主题
  3. properties-of-matrices
    3 主题
  4. transformations-using-matrices
    3 主题
  5. roots-of-polynomials
    2 主题
  6. series
    2 主题
  7. maclaurin-series
    1 主题
  8. hyperbolic-functions
    4 主题
  9. volumes-of-revolution
    2 主题
  10. methods-in-calculus
    5 主题
  11. vector-lines
    4 主题
  12. vector-planes
    4 主题
  13. polar-coordinates
    2 主题
  14. first-order-differential-equations
    3 主题
  15. second-order-differential-equations
    2 主题
  16. simple-harmonic-motion
    2 主题
  17. proof-by-induction
    2 主题
课 Progress
0% Complete

Scalar product

The scalar product is an important link between the algebra of vectors and the trigonometry of vectors. We shall see that the scalar product is somewhat comparable to the operation of multiplication on real numbers.

What is the scalar (dot) product?

  • The scalar product between two vectors a and b is represented by bold a times bold b

    • This is also called the dot product because of the symbol used

  • The scalar product between two vectors bold a equals a subscript 1 bold i plus a subscript 2 bold j plus a subscript 3 bold k and bold b equals b subscript 1 bold i plus b subscript 2 bold j plus b subscript 3 bold k is defined as bold a times bold b equals straight a subscript 1 b subscript 1 plus a subscript 2 b subscript 2 plus a subscript 3 b subscript 3

  • The result of taking the scalar product of two vectors is a real number

    • i.e. a scalar

  • For example,

<img alt=”open parentheses 3 bold i minus bold k close parentheses times open parentheses 2 bold i plus 9 bold j plus bold k close parentheses equals 3 cross times 2 plus 0 cross times 9 plus open parentheses negative 1 close parentheses cross times 1 equals 6 plus 0 minus 1 equals 5″ data-mathml='<math ><semantics><mrow><mfenced separators=”|”><mrow><mn>3</mn><mi mathvariant=”bold”>i</mi><mo>-</mo><mi mathvariant=”bold”>k</mi></mrow></mfenced><mo>·</mo><mfenced separators=”|”><mrow><mn>2</mn><mi mathvariant=”bold”>i</mi><mo>+</mo><mn>9</mn><mi mathvariant=”bold”>j</mi><mo>+</mo><mi mathvariant=”bold”>k</mi></mrow></mfenced><mo>=</mo><mn>3</mn><mo>×</mo><mn>2</mn><mo>+</mo><mn>0</mn><mo>×</mo><mn>9</mn><mo>+</mo><mfenced separators=”|”><mrow><mo>-</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mn>1</mn><mo>=</mo><mn>6</mn><mo>+</mo><mn>0</mn><mo>-</mo><mn>1</mn><mo>=</mo><mn>5</mn></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%22436%22%20wrs%3Abaseline%3D%2216%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmfenced%20separators%3D%22%7C%22%3E%3Cmrow%3E%3Cmn%3E3%3C%2Fmn%3E%3Cmi%20mathvariant%3D%22bold%22%3Ei%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi%20mathvariant%3D%22bold%22%3Ek%3C%2Fmi%3E%3C%2Fmrow%3E%3C%2Fmfenced%3E%3Cmo%3E%26%23xB7%3B%3C%2Fmo%3E%3Cmfenced%20separators%3D%22%7C%22%3E%3Cmrow%3E%3Cmn%3E2%3C%2Fmn%3E%3Cmi%20mathvariant%3D%22bold%22%3Ei%3C%2Fmi%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmn%3E9%3C%2Fmn%3E%3Cmi%20mathvariant%3D%22bold%22%3E

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注