Back to 课程

Further Maths: Core Pure -Edexcel-A Level

0% Complete
0/0 Steps
  1. complex-numbers-and-argand-diagrams
    6 主题
  2. exponential-form-and-de-moivres-theorem
    4 主题
  3. properties-of-matrices
    3 主题
  4. transformations-using-matrices
    3 主题
  5. roots-of-polynomials
    2 主题
  6. series
    2 主题
  7. maclaurin-series
    1 主题
  8. hyperbolic-functions
    4 主题
  9. volumes-of-revolution
    2 主题
  10. methods-in-calculus
    5 主题
  11. vector-lines
    4 主题
  12. vector-planes
    4 主题
  13. polar-coordinates
    2 主题
  14. first-order-differential-equations
    3 主题
  15. second-order-differential-equations
    2 主题
  16. simple-harmonic-motion
    2 主题
  17. proof-by-induction
    2 主题
课 Progress
0% Complete

Intro to proof by induction

What is proof by induction?

  • Proof by induction is a way of proving a result is true for a set of integers by showing that if it is true for one integer then it is true for the next integer

  • It can be thought of as dominoes:

    • All dominoes will fall down if:

      • The first domino falls down

      • Each domino falling down causes the next domino to fall down

What are the steps for proof by induction?

  • STEP 1: The basic step

    • Show the result is true for the base case

    • This is normally n = 1 or 0 but it could be any integer

      • In the dominoes analogy this is showing that the first domino falls down

  • STEP 2: The assumption step

    • Assume the result is true for n = k for some integer k

      • In the dominoes analogy this is assuming that a random domino falls down

    • There is nothing to do for this step apart from writing down the assumption

  • STEP 3: The inductive step

    • Using the assumption show the result is true for n = k + 1

    • The assumption from STEP 2 will be needed at some point

      • In the dominoes analogy this is showing that the random domino that we assumed falls down will cause the next one to fall down

  • STEP 4: The conclusion step

    • State the result is true

    • Explain in words why the result is true

    • It must include:

      • If true for n = k then it is true for n = k + 1

      • Since true for n = 1 the statement is true for all n ∈ ℤ, n ≥ 1 by mathematical induction

    • The sentence will be the same for each proof just change the base case from n = 1 if necessary

What type of statements might I be asked to prove by induction?

  • There are 4 main applications that you could be asked

    • Formulae for sums of series

    • Formulae for recursive sequences

    • Expression for the power of a matrix

    • Showing an expression is always divisible by a specific value

  • Induction is always used to prove de Moivre’s theorem

  • It is unlikely that you will be asked unfamiliar applications in your exam but induction is used in other areas of maths

    • Proving formulae for nth derivative of functions

    • Proving formulae involving factorials

Proving de Moivre’s theorem by induction

How is de Moivre’s theorem proved?

  • When written in Euler’s form the proof of de Moivre’s theorem is easy to see:

    • Using the index law of brackets: open parentheses r straight e to the power of straight i theta end exponent close parentheses to the power of n equals blank r to the power of n straight e to the power of straight i n theta end exponent

  • However Euler’s form cannot be used to prove de Moivre’s theorem when it is in modulus-argument (polar) form

  • Proof by induction can be used to prove de Moivre’s theorem for positive integers:

    • To prove de Moivre’s theorem for all positive integers, n

    • left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of n equals r to the power of n left parenthesis cos invisible function application n theta plus isin invisible function application n theta right parenthesis

  • STEP 1: Prove it is true for n = 1

    • <img alt=”left square bracket r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis right square bracket to the power of 1 equals r to the power of 1 left parenthesis cos invisible function application 1 theta plus isin invisible function application 1 theta right parenthesis equals blank r blank left parenthesis cos invisible function application theta plus isin invisible function application theta right parenthesis blank” data-mathml='<math ><semantics><mrow><mo>[</mo><mi>r</mi><mi> </mi><mo>(</mo><mi>cos</mi><mo>⁡</mo><mi>θ</mi><mo>+</mo><mi>isin</mi><mo>⁡</mo><mrow><mi>θ</mi><mo>)</mo><msup><mo>]</mo><mn>1</mn></msup></mrow><mo>=</mo><msup><mi>r</mi><mn>1</mn></msup><mo>(</mo><mi>cos</mi><mo>⁡</mo><mn>1</mn><mi>θ</mi><mo>+</mo><mi>isin</mi><mo>⁡</mo><mrow><mn>1</mn><mi>θ</mi><mo>)</mo><mo>=</mo><mi> </mi></mrow><mi>r</mi><mi> </mi><mo>(</mo><mi>cos</mi><mo>⁡</mo><mi>θ</mi><mo>+</mo><mi>isin</mi><mo>⁡</mo><mrow><mi>θ</mi><mo>)</mo><mi> </mi></mrow></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”23″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2223%22%20width%3D%22415%22%20wrs%3Abaseline%3D%2217%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E%5B%3C%2Fmo%3E%3Cmi%3Er%3C%2Fmi%3E%3Cmi%3E%26%23xA0%3B%3C%2Fmi%

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注