Further Maths: Core Pure -Edexcel-A Level
-
complex-numbers-and-argand-diagrams6 主题
-
exponential-form-and-de-moivres-theorem4 主题
-
properties-of-matrices3 主题
-
transformations-using-matrices3 主题
-
roots-of-polynomials2 主题
-
series2 主题
-
maclaurin-series1 主题
-
hyperbolic-functions4 主题
-
volumes-of-revolution2 主题
-
methods-in-calculus5 主题
-
vector-lines4 主题
-
vector-planes4 主题
-
polar-coordinates2 主题
-
first-order-differential-equations3 主题
-
second-order-differential-equations2 主题
-
simple-harmonic-motion2 主题
-
proof-by-induction2 主题
mean-value-of-a-function
Mean value of a function
What is the mean value of a function?
-
The mean value of a function may be thought of as the ‘average’ value of a function over a given interval
-
For a function f(x), the mean value of the function over the interval [a, b] is given by
-
Note that the mean value
is simply a real number – it is not a function
-
The mean value depends on the interval chosen – if the interval [a, b] changes, then the mean value may change as well
-
-
Because
is a real number, the graph of
is a horizontal line
-
This gives a geometrical interpretation of the mean value of a function over a given interval
-
If A is the area bounded by the curve y = f(x), the x-axis and the lines x = a and x = b, then the rectangle with its base on the interval [a, b] and with height also has area A
-
i.e. <img alt=”left parenthesis b minus a right parenthesis straight f with bar on top equals integral subscript a superscript b straight f left parenthesis x right parenthesis d x” data-mathml='<math ><semantics><mrow><mo>(</mo><mi>b</mi><mo>-</mo><mi>a</mi><mo>)</mo><mover><mi mathvariant=”normal”>f</mi><mo>¯</mo></mover><mo>=</mo><msubsup><mo>∫</mo><mi>a</mi><mi>b</mi></msubsup><mi mathvariant=”normal”>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>d</mo><mi>x</mi></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”49″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2249%22%20width%3D%22150%22%20wrs%3Abaseline%3D%2227%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmo%3E(%3C%2Fmo%3E%3Cmi%3Eb%3C%2Fmi%3E%3Cmo%3E-%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmo%3E)%3C%2Fmo%3E%3Cmover%3E%3Cmi%20mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E%26%23xAF%3B%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmsubsup%3E%3Cmo%3E%26%23x222B%3B%3C%2Fmo%3E%3Cmi%3Ea%3C%2Fmi%3E%3Cmi%3Eb%3C%2Fmi%3E%3C%2Fmsubsup%3E%3Cmi%20mathvariant%3D%22normal%22%3Ef%3C%2Fmi%3E%3Cmo%3E(%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3Cmo%3E)%3C%2Fmo%3E%3Cmo%3Ed%3C%2Fmo%3E%3Cmi%3Ex%3C%2Fmi%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-fa
-
-
Responses