Back to 课程

Further Maths: Core Pure -Edexcel-A Level

0% Complete
0/0 Steps
  1. complex-numbers-and-argand-diagrams
    6 主题
  2. exponential-form-and-de-moivres-theorem
    4 主题
  3. properties-of-matrices
    3 主题
  4. transformations-using-matrices
    3 主题
  5. roots-of-polynomials
    2 主题
  6. series
    2 主题
  7. maclaurin-series
    1 主题
  8. hyperbolic-functions
    4 主题
  9. volumes-of-revolution
    2 主题
  10. methods-in-calculus
    5 主题
  11. vector-lines
    4 主题
  12. vector-planes
    4 主题
  13. polar-coordinates
    2 主题
  14. first-order-differential-equations
    3 主题
  15. second-order-differential-equations
    2 主题
  16. simple-harmonic-motion
    2 主题
  17. proof-by-induction
    2 主题
课 Progress
0% Complete

Roots of complex numbers

How do I find the square root of a complex number?

  • The square roots of a complex number will themselves be complex:

    • i.e. if z squared equals a plus b straight i then z equals c plus d straight i

  • We can then square (c plus d straight i) and equate it to the original complex number (a plus b straight i), as they both describe z squared:

    • a plus b straight i equals open parentheses c plus d straight i close parentheses squared

  • Then expand and simplify:

    • <img alt=”a plus b straight i equals c squared plus 2 c d straight i plus d squared straight i squared” data-mathml='<math ><semantics><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mi mathvariant=”normal”>i</mi><mo>=</mo><msup><mi>c</mi><mn>2</mn></msup><mo>+</mo><mn>2</mn><mi>c</mi><mi>d</mi><mi

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注