Back to 课程

Further Maths: Core Pure -Edexcel-A Level

0% Complete
0/0 Steps
  1. complex-numbers-and-argand-diagrams
    6 主题
  2. exponential-form-and-de-moivres-theorem
    4 主题
  3. properties-of-matrices
    3 主题
  4. transformations-using-matrices
    3 主题
  5. roots-of-polynomials
    2 主题
  6. series
    2 主题
  7. maclaurin-series
    1 主题
  8. hyperbolic-functions
    4 主题
  9. volumes-of-revolution
    2 主题
  10. methods-in-calculus
    5 主题
  11. vector-lines
    4 主题
  12. vector-planes
    4 主题
  13. polar-coordinates
    2 主题
  14. first-order-differential-equations
    3 主题
  15. second-order-differential-equations
    2 主题
  16. simple-harmonic-motion
    2 主题
  17. proof-by-induction
    2 主题
课 Progress
0% Complete

Exponential form

You now know how to do lots of operations with complex numbers: add, subtract, multiply, divide, raise to a power and even square root. The last operation to learn is raising the number e to the power of an imaginary number.

How do we calculate e to the power of an imaginary number?

  • Given an imaginary number (iθ) we can define exponentiation as

    • straight e to the power of straight i theta end exponent equals cos space theta plus isin space theta

    • straight e to the power of straight i theta end exponent is the complex number with modulus 1 and argument θ

  • This works with our current rules of exponents

    • straight e to the power of 0 equals straight e to the power of 0 straight i end exponent equals cos invisible function application 0 plus isin invisible function application 0 equals 1

      • This shows e to the power 0 would still give the answer of 1

    • straight e to the power of straight i theta subscript 1 end exponent cross times straight e to the power of straight i theta subscript 2 end exponent equals straight e to the power of straight i left parenthesis theta subscript 1 plus theta subscript 2 right parenthesis end exponent 

      • This is because when you multiply complex numbers you can add the arguments

      • This shows that when you multiply two powers you can still add the indices

    • <img alt=”straight e to the power of iθ subscript 1 end exponent over straight e to the power of iθ subscript 2 end exponent equals straight e to the power of straight i left parenthesis straight theta subscript 1 minus straight theta subscript 2 right parenthesis end exponent” data-mathml='<math ><semantics><mrow><mfrac><msup><mi mathvariant=”normal”>e</mi><msub><mi>iθ</mi><mn>1</mn></msub></msup><msup><mi mathvariant=”normal”>e</mi><msub><mi>iθ</mi><mn>2</mn></msub></msup></mfrac><mo>=</mo><msup><mi mathvariant=”normal”>e</mi><mrow><mi mathvariant=”normal”>i</mi><mo>(</mo><msub><mi mathvariant=”normal”>θ</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant=”normal”>θ</mi><mn>2</mn></msub><mo>)</mo></mrow></msup></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”61″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2261%22%20wid

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注