Further Maths: Core Pure -Edexcel-A Level
-
complex-numbers-and-argand-diagrams6 主题
-
exponential-form-and-de-moivres-theorem4 主题
-
properties-of-matrices3 主题
-
transformations-using-matrices3 主题
-
roots-of-polynomials2 主题
-
series2 主题
-
maclaurin-series1 主题
-
hyperbolic-functions4 主题
-
volumes-of-revolution2 主题
-
methods-in-calculus5 主题
-
vector-lines4 主题
-
vector-planes4 主题
-
polar-coordinates2 主题
-
first-order-differential-equations3 主题
-
second-order-differential-equations2 主题
-
simple-harmonic-motion2 主题
-
proof-by-induction2 主题
exponential-form
Exponential form
You now know how to do lots of operations with complex numbers: add, subtract, multiply, divide, raise to a power and even square root. The last operation to learn is raising the number e to the power of an imaginary number.
How do we calculate e to the power of an imaginary number?
-
Given an imaginary number (iθ) we can define exponentiation as
-
-
is the complex number with modulus 1 and argument θ
-
-
This works with our current rules of exponents
-
-
This shows e to the power 0 would still give the answer of 1
-
-
-
This is because when you multiply complex numbers you can add the arguments
-
This shows that when you multiply two powers you can still add the indices
-
-
<img alt=”straight e to the power of iθ subscript 1 end exponent over straight e to the power of iθ subscript 2 end exponent equals straight e to the power of straight i left parenthesis straight theta subscript 1 minus straight theta subscript 2 right parenthesis end exponent” data-mathml='<math ><semantics><mrow><mfrac><msup><mi mathvariant=”normal”>e</mi><msub><mi>iθ</mi><mn>1</mn></msub></msup><msup><mi mathvariant=”normal”>e</mi><msub><mi>iθ</mi><mn>2</mn></msub></msup></mfrac><mo>=</mo><msup><mi mathvariant=”normal”>e</mi><mrow><mi mathvariant=”normal”>i</mi><mo>(</mo><msub><mi mathvariant=”normal”>θ</mi><mn>1</mn></msub><mo>-</mo><msub><mi mathvariant=”normal”>θ</mi><mn>2</mn></msub><mo>)</mo></mrow></msup></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”61″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2261%22%20wid
-
Responses