Further Maths: Core Pure -Edexcel-A Level
-
complex-numbers-and-argand-diagrams6 主题
-
exponential-form-and-de-moivres-theorem4 主题
-
properties-of-matrices3 主题
-
transformations-using-matrices3 主题
-
roots-of-polynomials2 主题
-
series2 主题
-
maclaurin-series1 主题
-
hyperbolic-functions4 主题
-
volumes-of-revolution2 主题
-
methods-in-calculus5 主题
-
vector-lines4 主题
-
vector-planes4 主题
-
polar-coordinates2 主题
-
first-order-differential-equations3 主题
-
second-order-differential-equations2 主题
-
simple-harmonic-motion2 主题
-
proof-by-induction2 主题
regions-in-argand-diagrams
Inequalities & regions in Argand diagrams
How do I sketch inequalities such as
or
on an Argand diagram?
-
The inequality
is satisfied by all complex numbers,
, with a real part less than 2
-
On an Argand diagram, this would be the region to the left of the vertical line
-
The vertical line itself,
, should be drawn dotted to show that points on this line are not permitted due to the strict inequality (<)
-
-
In general, dotted lines are used with strict inequalities ( < or > ) and solid lines are used with inequalities that can be equal ( ≤ or ≥ )
-
Here is how to represent the following inequalities as regions on an Argand diagram…
-
<img alt=”Re blank z less than k” data-mathml='<math ><semantics><mrow><mi>Re</mi><mi> </mi><mi>z</mi><mo><</mo><mi>k</mi></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“language”:”en”,”fontFamily”:”Times New Roman”,”fontSize”:”18″}</annotation></semantics></math>’ height=”22″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2222%22%20width%3D%2260%22%20wrs%3Abaseline%3D%2216%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmi%3ERe%3C%2Fmi%3E%3Cmi%3E%26%23xA0%3B%3C%2Fmi%3E%3Cmi%3Ez%3C%2Fmi%3E%3Cmo%3E%26lt%3B%3C%2Fmo%3E%3Cmi%3Ek%3C%2Fmi%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’math1072b030ba126b2f4b2374f342b’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAADRjdnQgDVUNBwAAAVAAAAA6Z2x5ZoPi2VsAAAGMAAAAzGhlYWQQC2qxAAACWAAAADZoaGVhCGsXSAAAApAAAAAkaG10eE2rRkcAAAK0AAAACGxvY2EAHTwYAAACvAAAAAxtYXhwBT0FPgAAAsgAAAAgbmFtZaBxlY4AAALoAAABn3Bvc3QB9wD6AAAEiAAAACBwcmVwa1uragAABKgAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACAAAAAEAAQAAQAAADz%2F%2FwAAADz%2F%2F%2F%2FFAAEAAAAAAAABVAMsAIABAABWACoCWAIeAQ4BLAIsAFoBgAKAAKAA1ACAAAAAAAAAACsAVQCAAKsA1QEAASsABwAAAAIAVQAAAwADqwADAAcAADMRIRElIREhVQKr%2FasCAP4AA6v8VVUDAAACAIAAVQKAAqsABQALAGwYsEEaALEAABMQsQAG5LEAARMQsAk8sQEF9bAKPLAAELEFA%2FWxAgXtsQQD9bEDBe2wChCxCwP1sQgF7bEGA%2FWxBwXtAbAMELEBA%2FayCQAKPDw8sQUE9bICCAs8PDyxBAT1sgYHAzw8PLENA%2BYTBwUXNScBNQ0BFzeBAQEA%2F%2F8BAP8A%2FwAB%2FwGrVoCAVoABKlaAgFaAAAEAAAABAADVeM5BXw889QADBAD%2F%2F%2F%2F%2F1joTc%2F%2F%2F%2F%2F%2FWOhNzAAD%2FIASAA6sAAAAKAAIAAQAAAAAAAQAAA%2Bj%2FagAAF3AAAP%2B2BIAAAQAAAAAAAAAAAAAAAAAAAAIDUgBVAwAAgAAAAAAAAAAoAAAAzAABAAAAAgBeAAUAAAAAAAIAgAQAAAAAAAQAAN4AAAAAAAAAFQECAAAAAAAAAAEAEgAAAAAAAAAAAAIADgASAAAAAAAAAAMAMAAgAAAAAAAAAAQAEgBQAAAAAAAAAAUAFgBiAAAAAAAAAAYACQB4AAAAAAAAAAgAHACBAAEAAAAAAAEAEgAAAAEAAAAAAAIADgASAAEAAAAAAAMAMAAgAAEAAAAAAAQAEgBQAAEAAAAAAAUAFgBiAAEAAAAAAAYACQB4AAEAAAAAAAg
-
Responses