Computer-science_A-level_Cie
-
computers-and-components6 主题
-
logic-gates-and-logic-circuits2 主题
-
central-processing-unit-cpu-architecture6 主题
-
assembly-language-4 主题
-
bit-manipulation1 主题
-
operating-systems3 主题
-
language-translators2 主题
-
data-security3 主题
-
data-integrity1 主题
-
ethics-and-ownership3 主题
-
database-concepts3 主题
-
database-management-systems-dbms-1 主题
-
data-definition-language-ddl-and-data-manipulation-language-dml1 主题
-
computational-thinking-skills1 主题
-
algorithms14 主题
-
data-types-and-records2 主题
-
arrays2 主题
-
files1 主题
-
introduction-to-abstract-data-types-adt1 主题
-
programming-basics1 主题
-
constructs2 主题
-
structured-programming1 主题
-
program-development-life-cycle2 主题
-
program-design-2 主题
-
program-testing-and-maintenance3 主题
-
user-defined-data-types1 主题
-
file-organisation-and-access-3 主题
-
floating-point-numbers-representation-and-manipulation3 主题
-
protocols2 主题
-
circuit-switching-packet-switching1 主题
-
processors-parallel-processing-and-virtual-machines5 主题
-
boolean-algebra-and-logic-circuits4 主题
-
purposes-of-an-operating-system-os3 主题
-
translation-software3 主题
-
encryption-encryption-protocols-and-digital-certificates3 主题
-
artificial-intelligence-ai4 主题
-
recursion1 主题
-
programming-paradigms4 主题
-
object-oriented-programming7 主题
-
file-processing-and-exception-handling2 主题
-
data-representation5 主题
-
multimedia3 主题
-
compression2 主题
-
networks-and-the-internet11 主题
precision-issues
Approximation & rounding
-
In computing, real numbers are often stored using floating-point binary, which has a limited number of bits for the mantissa and exponent
-
This means not all real numbers can be represented exactly, only approximated
Rounding errors
-
Some decimal values cannot be precisely represented in binary
-
Example:
Decimal: 0.1
Binary: 0.000110011001100... (recurring)
-
Because memory is limited (e.g. 32 or 64 bits), the binary value must be truncated or rounded, which introduces small errors
-
Consequence:
-
Calculations using approximated values may accumulate errors
-
Final results may be slightly inaccurate
-
Underflow
-
Underflow occurs when a number is too close to zero to be stored in the available number of bits
-
Example:
-
A very small number like
1.2 × 10⁻⁴⁰ -
The exponent is too negative to be stored
-
Result: Stored as 0
-
-
Consequence:
-
Loss of precision
-
Can affect accuracy in scientific or financial calculations
-
Overflow
-
Overflow occurs when a number is too large to fit in the allocated bits for the exponent or mantissa
-
Example:
-
A calculation produces
1.2 × 10⁵⁰, but the maximum representable number is1.2 × 10³⁸
-
-
Consequence:
-
Program may crash or return an infinity, error, or wraparound value
-
Can be especially dangerous in loops or financial applications
-
Summary table
|
Issue |
Cause |
Effect |
|---|---|---|
|
Rounding error |
Real number can’t be exactly represented in binary |
Slight inaccuracies in results |
|
Underflow |
Number too small to be stored (exponent too negative) |
Value becomes 0 |
|
Overflow |
Number too large to be stored (exponent too positive) |
Incorrect result or program error |
Responses