Back to 课程

Computer-science_A-level_Cie

0% Complete
0/0 Steps
  1. computers-and-components
    6 主题
  2. logic-gates-and-logic-circuits
    2 主题
  3. central-processing-unit-cpu-architecture
    6 主题
  4. assembly-language-
    4 主题
  5. bit-manipulation
    1 主题
  6. operating-systems
    3 主题
  7. language-translators
    2 主题
  8. data-security
    3 主题
  9. data-integrity
    1 主题
  10. ethics-and-ownership
    3 主题
  11. database-concepts
    3 主题
  12. database-management-systems-dbms-
    1 主题
  13. data-definition-language-ddl-and-data-manipulation-language-dml
    1 主题
  14. computational-thinking-skills
    1 主题
  15. algorithms
    14 主题
  16. data-types-and-records
    2 主题
  17. arrays
    2 主题
  18. files
    1 主题
  19. introduction-to-abstract-data-types-adt
    1 主题
  20. programming-basics
    1 主题
  21. constructs
    2 主题
  22. structured-programming
    1 主题
  23. program-development-life-cycle
    2 主题
  24. program-design-
    2 主题
  25. program-testing-and-maintenance
    3 主题
  26. user-defined-data-types
    1 主题
  27. file-organisation-and-access-
    3 主题
  28. floating-point-numbers-representation-and-manipulation
    3 主题
  29. protocols
    2 主题
  30. circuit-switching-packet-switching
    1 主题
  31. processors-parallel-processing-and-virtual-machines
    5 主题
  32. boolean-algebra-and-logic-circuits
    4 主题
  33. purposes-of-an-operating-system-os
    3 主题
  34. translation-software
    3 主题
  35. encryption-encryption-protocols-and-digital-certificates
    3 主题
  36. artificial-intelligence-ai
    4 主题
  37. recursion
    1 主题
  38. programming-paradigms
    4 主题
  39. object-oriented-programming
    7 主题
  40. file-processing-and-exception-handling
    2 主题
  41. data-representation
    5 主题
  42. multimedia
    3 主题
  43. compression
    2 主题
  44. networks-and-the-internet
    11 主题
课 Progress
0% Complete

Approximation & rounding

  • In computing, real numbers are often stored using floating-point binary, which has a limited number of bits for the mantissa and exponent

  • This means not all real numbers can be represented exactly, only approximated

Rounding errors

  • Some decimal values cannot be precisely represented in binary

  • Example:

Decimal: 0.1
Binary: 0.000110011001100... (recurring)
  • Because memory is limited (e.g. 32 or 64 bits), the binary value must be truncated or rounded, which introduces small errors

  • Consequence:

    • Calculations using approximated values may accumulate errors

    • Final results may be slightly inaccurate

Underflow

  • Underflow occurs when a number is too close to zero to be stored in the available number of bits

  • Example:

    • A very small number like 1.2 × 10⁻⁴⁰

    • The exponent is too negative to be stored

    • Result: Stored as 0

  • Consequence:

    • Loss of precision

    • Can affect accuracy in scientific or financial calculations

Overflow

  • Overflow occurs when a number is too large to fit in the allocated bits for the exponent or mantissa

  • Example:

    • A calculation produces 1.2 × 10⁵⁰, but the maximum representable number is 1.2 × 10³⁸

  • Consequence:

    • Program may crash or return an infinity, error, or wraparound value

    • Can be especially dangerous in loops or financial applications

Summary table

Issue

Cause

Effect

Rounding error

Real number can’t be exactly represented in binary

Slight inaccuracies in results

Underflow

Number too small to be stored (exponent too negative)

Value becomes 0

Overflow

Number too large to be stored (exponent too positive)

Incorrect result or program error

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注