Back to 课程

Computer-science_A-level_Cie

0% Complete
0/0 Steps
  1. computers-and-components
    6 主题
  2. logic-gates-and-logic-circuits
    2 主题
  3. central-processing-unit-cpu-architecture
    6 主题
  4. assembly-language-
    4 主题
  5. bit-manipulation
    1 主题
  6. operating-systems
    3 主题
  7. language-translators
    2 主题
  8. data-security
    3 主题
  9. data-integrity
    1 主题
  10. ethics-and-ownership
    3 主题
  11. database-concepts
    3 主题
  12. database-management-systems-dbms-
    1 主题
  13. data-definition-language-ddl-and-data-manipulation-language-dml
    1 主题
  14. computational-thinking-skills
    1 主题
  15. algorithms
    14 主题
  16. data-types-and-records
    2 主题
  17. arrays
    2 主题
  18. files
    1 主题
  19. introduction-to-abstract-data-types-adt
    1 主题
  20. programming-basics
    1 主题
  21. constructs
    2 主题
  22. structured-programming
    1 主题
  23. program-development-life-cycle
    2 主题
  24. program-design-
    2 主题
  25. program-testing-and-maintenance
    3 主题
  26. user-defined-data-types
    1 主题
  27. file-organisation-and-access-
    3 主题
  28. floating-point-numbers-representation-and-manipulation
    3 主题
  29. protocols
    2 主题
  30. circuit-switching-packet-switching
    1 主题
  31. processors-parallel-processing-and-virtual-machines
    5 主题
  32. boolean-algebra-and-logic-circuits
    4 主题
  33. purposes-of-an-operating-system-os
    3 主题
  34. translation-software
    3 主题
  35. encryption-encryption-protocols-and-digital-certificates
    3 主题
  36. artificial-intelligence-ai
    4 主题
  37. recursion
    1 主题
  38. programming-paradigms
    4 主题
  39. object-oriented-programming
    7 主题
  40. file-processing-and-exception-handling
    2 主题
  41. data-representation
    5 主题
  42. multimedia
    3 主题
  43. compression
    2 主题
  44. networks-and-the-internet
    11 主题
课 Progress
0% Complete

Floating-point binary

What is floating-point binary?

  • Floating-point binary is a method of representing real numbers in binary, including fractions and very large or very small values

  • Uses scientific notation in base-2

  • Unlike fixed-point (where the binary point is fixed), the binary point can “float” using a mantissa and an exponent

Why use floating-point?

  • Can represent a much wider range of numbers

  • Provides more precision for fractional values

  • Makes efficient use of limited storage (e.g. 8-bit, 16-bit representations)

Components of floating-point

Component

Description

Mantissa

  • Holds the significant digits of the number

  • The first bit is the sign (0 = +, 1 = −)

  • The remaining bits are the fraction

Exponent

  • Shows how far to move the binary point (positive = right, negative = left)

  • Stored in two’s complement (unbiased)

Example in decimal

3.14 × 10³

  • Mantissa = 3.14

  • Exponent = 3

Example in binary

110.01₂ = 0.11001 × 2³

  • Mantissa = 011001… (sign 0, fraction 11001 padded to available bits)

  • Exponent = 0011 (+3 in two’s complement)

Positive floating-point representation

  • Sign bit = 0

  • Fraction part stored in the remaining mantissa bits

  • Exponent shifts the binary point

Negative floating-point representation

  • Sign bit = 1

  • Fraction part stored in the remaining mantissa bits

  • Exponent is in two’s complement

  • Example:

    • −6.25 = 110.01₂ = 0.11001 × 2³

    • Mantissa = 111001000000 (sign = 1, fraction = 11001 padded)

    • Exponent = 0011

Normalising floating-point numbers

  • A floating-point number is normalised when the mantissa begins with:

    • 01 for positive numbers

    • 10 for negative numbers

Why normalise?

Reason

Explanation

Consistency

All numbers follow the same structure

Precision

Leading zeros removed so mantissa makes full use of available bits

Easier processing

Arithmetic and comparisons are simpler

Steps to normalise a floating-point number

  1. Shift the binary point until the mantissa begins with 01 (positive) or 10 (negative)

  2. Adjust the exponent by the number of shifts:

    • Moving left → increase exponent

    • Moving right → decrease exponent

Example

  • Before normalisation:

    • Mantissa = 00011

    • Exponent = 0010 (+2)

  • Process:

    • Shift binary point 2 places right → mantissa = 01100

    • Decrease exponent by 2 → exponent = 0000

  • After normalisation:

    • Mantissa = 01100

    • Exponent = 0000

Examiner Tips and Tricks

  • Remember: mantissa sign = first bit, not two’s complement

  • Only the exponent uses two’s complement

  • In CIE questions, always write mantissas as 0.xxxxx × 2ⁿ, not 1.xxxxx × 2ⁿ (that’s IEEE)

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注