Back to 课程

Computer-science_A-level_Cie

0% Complete
0/0 Steps
  1. computers-and-components
    6 主题
  2. logic-gates-and-logic-circuits
    2 主题
  3. central-processing-unit-cpu-architecture
    6 主题
  4. assembly-language-
    4 主题
  5. bit-manipulation
    1 主题
  6. operating-systems
    3 主题
  7. language-translators
    2 主题
  8. data-security
    3 主题
  9. data-integrity
    1 主题
  10. ethics-and-ownership
    3 主题
  11. database-concepts
    3 主题
  12. database-management-systems-dbms-
    1 主题
  13. data-definition-language-ddl-and-data-manipulation-language-dml
    1 主题
  14. computational-thinking-skills
    1 主题
  15. algorithms
    14 主题
  16. data-types-and-records
    2 主题
  17. arrays
    2 主题
  18. files
    1 主题
  19. introduction-to-abstract-data-types-adt
    1 主题
  20. programming-basics
    1 主题
  21. constructs
    2 主题
  22. structured-programming
    1 主题
  23. program-development-life-cycle
    2 主题
  24. program-design-
    2 主题
  25. program-testing-and-maintenance
    3 主题
  26. user-defined-data-types
    1 主题
  27. file-organisation-and-access-
    3 主题
  28. floating-point-numbers-representation-and-manipulation
    3 主题
  29. protocols
    2 主题
  30. circuit-switching-packet-switching
    1 主题
  31. processors-parallel-processing-and-virtual-machines
    5 主题
  32. boolean-algebra-and-logic-circuits
    4 主题
  33. purposes-of-an-operating-system-os
    3 主题
  34. translation-software
    3 主题
  35. encryption-encryption-protocols-and-digital-certificates
    3 主题
  36. artificial-intelligence-ai
    4 主题
  37. recursion
    1 主题
  38. programming-paradigms
    4 主题
  39. object-oriented-programming
    7 主题
  40. file-processing-and-exception-handling
    2 主题
  41. data-representation
    5 主题
  42. multimedia
    3 主题
  43. compression
    2 主题
  44. networks-and-the-internet
    11 主题
课 Progress
0% Complete

Boolean algebra

What is Boolean algebra?

  • Boolean algebra is a mathematical system used to manipulate Boolean values

  • Complex expressions can be made simpler using the rules of Boolean algebra

  • This is a more powerful simplification method than Karnaugh maps and can simplify expressions that Karnaugh maps cannot

  • There are various different rules that you need to learn and that can then be applied to certain expressions to simplify them

  • Combining these rules can mean that complex expressions can be reduced to much simpler ones

General rules

  • General AND rules

    • X AND 0 = 0

    • X AND 1 = X

    • X AND A = X

    • NOT X AND X = 0

  • Note, the value ox X is unknown and it is used as a placeholder

  • Therefore X AND 1 = X means that the output will be whatever the value of X is

  • General OR rules

    • X OR 0 = X
      X OR 1 = 1
      X OR A = X
      NOT X OR X = 1

Boolean algebra notation

  • In Boolean algebra, expressions are written using shorthand notation:

Symbol

Meaning

Example

Explanation

A · B or AB

AND

A · B

True only if both A and B are 1

A + B

OR

A + B

True if either A or B is 1

¬A or A'

NOT / complement

¬A

True if A is 0, False if A is 1

( )

Brackets / grouping

(A + B)·C

Do A OR B first, then AND with C

Examiner Tips and Tricks

A dot (·) for AND is often omitted, so AB means A AND B

  • A line drawn above a variable or expression means that the value is inverted or negated

  • It’s the NOT of that value

Notation

Meaning

Explanation

¬A or A' or

NOT A

True if A is False, False if A is True

A · B̅

A AND (NOT B)

B is negated before the AND operation

(A + B)̅

NOT (A OR B)

The entire OR expression is negated (use De Morgan)

(A · B · C)̅

NOT (A AND B AND C)

All values are ANDed together, then the result is negated

  • When you see multiple horizontal lines, for example:

Three Boolean expressions: (A.B), (A.C), (B.D) each with an overline indicating negation, displayed as digital logic notation.
  • It means the whole expression is negated, not just one part

  • Always apply De Morgan’s Law starting with the outermost line first

De Morgan’s Law

What is De Morgan’s Law?

  • De Morgan’s Laws are used to simplify Boolean expressions involving negation of conjunctions (AND) or disjunctions (OR)

  • They are particularly useful for rewriting logic circuits using only NAND or NOR gates

  • There are two key rules:

    1. NOT (A AND B) is equivalent to (NOT A) OR (NOT B)

      stack A. space B with bar on top equals A with bar on top plus B with bar on top

    2. NOT (A OR B) is equivalent to (NOT A) AND (NOT B)

      <img alt=”stack A space plus space B with bar on top equals top enclose A space. space top enclose B” data-mathml=”<math ><semantics><mrow><mover><mrow><mi>A</mi><mo>&#160;</mo><mo>+</mo><mo>&#160;</mo><mi>B</mi></mrow><mo>&#175;</mo></mover><mo>=</mo><menclose notation=”top”><mi>A</mi></menclose><mo>&#160;</mo><mo>.</mo><mo>&#160;</mo><menclose notation=”top”><mi>B</mi></menclose></mrow><annotation encoding=”application/vnd.wiris.mtweb-params+json”>{“fontFamily”:”Times New Roman”,”fontSize”:”18″,”autoformat”:true,”toolbar”:”<toolbar ref=’general’><tab ref=’general’><removeItem ref=’setColor’/><removeItem ref=’bold’/><removeItem ref=’italic’/><removeItem ref=’autoItalic’/><removeItem ref=’setUnicode’/><removeItem ref=’mtext’ /><removeItem ref=’rtl’/><removeItem ref=’forceLigature’/><removeItem ref=’setFontFamily’ /><removeItem ref=’setFontSize’/></tab></toolbar>”}</annotation></semantics></math>” height=”28″ role=”math” src=”data:image/svg+xml;charset=utf8,%3Csvg%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F2000%2Fsvg%22%20xmlns%3Awrs%3D%22http%3A%2F%2Fwww.wiris.com%2Fxml%2Fmathml-extension%22%20height%3D%2228%22%20width%3D%22110%22%20wrs%3Abaseline%3D%2222%22%3E%3C!–MathML%3A%20%3Cmath%20xmlns%3D%22http%3A%2F%2Fwww.w3.org%2F1998%2FMath%2FMathML%22%3E%3Cmover%3E%3Cmrow%3E%3Cmi%3EA%3C%2Fmi%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%3E%2B%3C%2Fmo%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmrow%3E%3Cmo%3E%26%23xAF%3B%3C%2Fmo%3E%3C%2Fmover%3E%3Cmo%3E%3D%3C%2Fmo%3E%3Cmenclose%20notation%3D%22top%22%3E%3Cmi%3EA%3C%2Fmi%3E%3C%2Fmenclose%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmo%3E.%3C%2Fmo%3E%3Cmo%3E%26%23xA0%3B%3C%2Fmo%3E%3Cmenclose%20notation%3D%22top%22%3E%3Cmi%3EB%3C%2Fmi%3E%3C%2Fmenclose%3E%3C%2Fmath%3E–%3E%3Cdefs%3E%3Cstyle%20type%3D%22text%2Fcss%22%3E%40font-face%7Bfont-family%3A’horizontalbf65417dcecc7f2b0006e’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMlJxIOAAAADMAAAATmNtYXCwg0j%2FAAABHAAAADRjdnQgAAcAAAAAAVAAAAACZ2x5ZuwE1kUAAAFUAAAAO2hlYWQNciGiAAABkAAAADZoaGVhBusXCAAAAcgAAAAkaG10eGjtB6sAAAHsAAAACGxvY2EAAYSYAAAB9AAAAAxtYXhwBLEEbgAAAgAAAAAgbmFtZReja%2F8AAAIgAAAByXBvc3QB9wD6AAAD7AAAACBwcmVwu5WEAAAABAwAAAAHAAACRwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAACOv8xEDev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEACAAAAAEAAQAAQAAI6%2F%2F%2FwAAI6%2F%2F%2F9xSAAEAAAAAAAcAAAABAAABVQGrAasAAwAjGAGwBBCwATywARCwAtSwAhCwBTwAsAQQsAHUsAEQsADUMDERFSE1AasBq1ZWAAABAAAAAQAARVMXc18PPPUAAwQA%2F%2F%2F%2F%2F9Wt7tH%2F%2F%2F%2F%2F1a3u0QAAAAADAAMAAAAACgACAAEAAAAAAAEAAAPo%2F2oAABdwAAD%2F%2FwMAAAEAAAAAAAAAAAAAAAAAAAACAyAAAAGrAAAAAAAAAAAAAAAAADsAAQAAAAIADQACAAAAAAACAIAEAAAAAAAEAABfAAAAAAAAABUBAgAAAAAAAAABAB4AAAAAAAAAAAACAA4AHgAAAAAAAAADADwALAAAAAAAAAAEAB4AaAAAAAAAAAAFABYAhgAAAAAAAAAGAA8AnAAAAAAAAAAIABwAqwABAAAAAAABAB4AAAABAAAAAAACAA4AHgABAAAAAAADADwALAABAAAAAAAEAB4AaAABAAAAAAAFABYAhgABAAAAAAAGAA8AnAABAAAAAAAIABwAqwADAAEECQABAB4AAAADAAEECQACAA4AHgADAAEECQADADwALAADAAEECQAEAB4AaAADAAEECQAFABYAhgADAAEECQAGAA8AnAADAAEECQAIABwAqwBIAG8AcgBpAHoAbwBuAHQAYQBsACAARgBvAG4AdABSAGUAZwB1AGwAYQByAE0AYQB0AGgAcwAgAEYAbwByACAATQBvAHIAZQAgAEgAbwByAGkAegBvAG4AdABhAGwAIABGAG8AbgB0AEgAbwByAGkAegBvAG4AdABhAGwAIABGAG8AbgB0AFYAZQByAHMAaQBvAG4AIAAxAC4AMEhvcml6b250YWxfRm9udABNAGEAdABoAHMAIABGAG8AcgAgAE0AbwByAGUAAAAAAwAAAAAAAAH0APoAAAAAAAAAAAAAAAAAAAAAAAAAALkH%2FwACjYUA)format(‘truetype’)%3Bfont-weight%3Anormal%3Bfont-style%3Anormal%3B%7D%40font-face%7Bfont-family%3A’math105e3f444b77fd674ead956ad23’%3Bsrc%3Aurl(data%3Afont%2Ftruetype%3Bcharset%3Dutf-8%3Bbase64%2CAAEAAAAMAIAAAwBAT1MvMi7iBBMAAADMAAAATmNtYXDEvmKUAAABHAAAAERjdnQgDVUNBwAAAWAAAAA6Z2x5ZoPi2VsAAAGcAAABcWhlYWQQC2qxAAADEAAAADZoaGVhCGsXSAAAA0gAAAAkaG10eE2rRkcAAANsAAAAEGxvY2EAHTwYAAADfAAAABRtYXhwBT0FPgAAA5AAAAAgbmFtZaBxlY4AAAOwAAABn3Bvc3QB9wD6AAAFUAAAACBwcmVwa1uragAABXAAAAAUAAADSwGQAAUAAAQABAAAAAAABAAEAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAgICAAAAAg1UADev96AAAD6ACWAAAAAAACAAEAAQAAABQAAwABAAAAFAAEADAAAAAIAAgAAgAAACsALgA9%2F%2F8AAAArAC4APf%2F%2F%2F9b%2F1P%2FGAAEAAAAAAAAAAAAAAVQDLACAAQAAVgAqAlgCHgEOASwCLABaAYACgACgANQAgAAAAAAAAAArAFUAgACrANUBAAErAAcAAAACAFUAAAMAA6sAAwAHAAAzESERJSERIVUCq%2F2rAgD%2BAAOr%2FFVVAw

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注