Computer Science GCES OCR
-
Cpu Architecture Performance And Embedded Systems Ocr5 主题
-
Primary And Secondary Storage Ocr6 主题
-
Data Storage And Compression Ocr12 主题
-
Units Of Data Storage Ocr
-
Processing Binary Data Ocr
-
Data Capacity And Calculating Capacity Requirements Ocr
-
Converting Between Denary And Binary Ocr
-
Binary Addition Ocr
-
Converting Between Denary And Hexadecimal Ocr
-
Converting Between Binary And Hexadecimal Ocr
-
Binary Shifts Ocr
-
Representing Characters Ocr
-
Representing Images Ocr
-
Representing Sound Ocr
-
Compression Ocr
-
Units Of Data Storage Ocr
-
Networks And Topologies Ocr6 主题
-
Wired And Wireless Networks Protocols And Layers Ocr6 主题
-
Identifying And Preventing Threats To Computer Systems And Networks Ocr2 主题
-
Operating Systems And Utility Software Ocr2 主题
-
Ethical Legal Cultural And Environmental Impact Ocr2 主题
-
Computational Thinking Searching And Sorting Algorithms Ocr3 主题
-
Designing Creating And Refining Algorithms Ocr5 主题
-
Programming Fundamentals And Data Types Ocr5 主题
-
Additional Programming Techniques Ocr7 主题
-
Defensive Design And Testing Ocr6 主题
-
Boolean Logic Diagrams Ocr2 主题
-
Programming Languages And Integrated Development Environments Ides Ocr3 主题
-
The Exam Papers Ocr2 主题
-
Structuring Your Responses Ocr3 主题
Converting Between Binary And Hexadecimal Ocr
Exam code:J277
Binary to Hexadecimal Conversion
-
It is important before revising how to convert from binary to hexadecimal and vice versa that you fully understand the binary and hexadecimal number systems.
How do you convert from binary to hexadecimal?
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
Example 1
-
To convert the binary number 10110111 to hexadecimal, first split the 8 bit number into 2 binary nibbles
|
8 |
4 |
2 |
1 |
|
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|---|
|
1 |
0 |
1 |
1 |
|
0 |
1 |
1 |
1 |
-
For each nibble, convert the binary to it’s denary value
-
(1 x 8) + (1 x 2) + (1 x 1) = 11 (B)
-
(1 x 4) + (1 x 2) + (1 x 1) = 7
-
Join them together to make a 2 digit hexadecimal number
-
Binary 10110111 is B7 in hexadecimal
Example 2
-
To convert the binary number 00111001 to hexadecimal, first split the 8 bit number into 2 binary nibbles
|
8 |
4 |
2 |
1 |
|
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|---|
|
0 |
0 |
1 |
1 |
|
1 |
0 |
0 |
1 |
-
For each nibble, convert the binary to it’s denary value
-
(1 x 2) + (1 x 1) = 3
-
(1 x 8) + (1 x 1) = 9
-
Join them together to make a 2 digit hexadecimal number
-
Binary 00111001 is 39 in hexadecimal
Hexadecimal to Binary Conversion
How do you convert from hexadecimal to binary?
Example 1
-
To convert the hexadecimal number 5F to binary, first split the digits apart and convert each to a binary nibble
|
8 |
4 |
2 |
1 |
|
|---|---|---|---|---|
|
0 |
1 |
0 |
1 |
= 5 |
|
8 |
4 |
2 |
1 |
|
|---|---|---|---|---|
|
1 |
1 |
1 |
1 |
= 15 (F) |
-
Join the 2 binary nibbles together to create an 8 bit binary number
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
0 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
-
Hexadecimal 5F is 01011111 in binary
Example 2
-
To convert the hexadecimal number 26 to binary, first split the digits apart and convert each to a binary nibble
|
8 |
4 |
2 |
1 |
|
|---|---|---|---|---|
|
0 |
0 |
1 |
0 |
= 2 |
|
8 |
4 |
2 |
1 |
|
|---|---|---|---|---|
|
0 |
1 |
1 |
0 |
= 6 |
-
Join the 2 binary nibbles together to create an 8 bit binary number
|
128 |
64 |
32 |
16 |
8 |
4 |
2 |
1 |
|---|---|---|---|---|---|---|---|
|
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
-
Hexadecimal 26 is 00100110 in binary
Responses