Back to 课程

Computer Science GCES AQA

0% Complete
0/0 Steps
  1. Representing Algorithms Aqa
    4 主题
  2. Efficiency Of Algorithms Aqa
    1 主题
  3. Searching Algorithms Aqa
    3 主题
  4. Sorting Algorithms Aqa
    3 主题
  5. Data Types Aqa
    1 主题
  6. Programming Concepts Aqa
    5 主题
  7. Arithmetic Relational And Boolean Operations Aqa
    1 主题
  8. Data Structures Aqa
    3 主题
  9. String Manipulation Aqa
    1 主题
  10. Random Number Generation Aqa
    1 主题
  11. Structured Programming Aqa
    2 主题
  12. Robust And Secure Programming Aqa
    4 主题
  13. Number Bases Aqa
    2 主题
  14. Converting Between Number Bases Aqa
    3 主题
  15. Units Of Information Aqa
    9 主题
  16. Hardware And Software Aqa
    4 主题
  17. Boolean Logic Aqa
    3 主题
  18. Programming Languages And Translators Aqa
    2 主题
  19. Cpu Architecture Performance And Embedded Systems Aqa
    4 主题
  20. Memory Aqa
    2 主题
  21. Secondary Storage Aqa
    3 主题
  22. Fundamentals Of Computer Networks Aqa
    8 主题
  23. Fundamentals Of Cyber Security Aqa
    1 主题
  24. Methods Of Preventing Cyber Security Threats Aqa
    1 主题
  25. Relational Databases Aqa
    2 主题
  26. Ethical Legal And Environmental Impacts Aqa
    2 主题
课 Progress
0% Complete

Exam code:8525

How Sound is Sampled & Stored

  • Computers represent all data in binary, including sound that we record using a microphone (input) or sound that we playback from a speaker (output)

  • For this to happen, sound must be sampled and stored

Examiner Tips and Tricks

Key specification changes for AQA GCSE Computer Science (8525) – first exam 2027

  • When studying how sound is converted to digital form, you no longer need to focus on the specific phrase “in a computer” when discussing its storage and processing

  • The core concept of analogue to digital conversion remains, but the scope has been slightly narrowed

How is sound sampled & stored?

  • Measurements of the original sound wave are captured and stored as binary on secondary storage

  • Sound waves begin as analogue and for a computer system to understand them they must be converted into a digital form

  • This process is called Analogue to Digital conversion (A2D)

  • The process begins by measuring the amplitude of the analogue sound wave at a point in time, called samples

  • Each measurement (sample) generates a value which can be represented in binary and stored

  • Using the samples, a computer is able to create a digital version of the original analogue wave

  • The digital wave is stored on secondary storage and can be played back at any time by reversing the process

analogue-to-digital-image
  • In this example, the grey line represents the digital wave that has been created by taking samples of the original analogue wave

  • In order for the digital wave to look more like the analogue wave the sample rate and bit depth can be changed

Sample Rate, Duration & Sample Resolution

What is sample rate?

  • Sample rate is the amount of samples taken per second of the analogue wave

  • Samples are taken each second for the duration of the sound

  • The sample rate is measured in Hertz (Hz)

  • 1 Hertz is equal to 1 sample of the sound wave

image2---sample-rate-comparisons

In this example you can see that the higher the sample rate, the closer to the original sound wave the digital version looks

image-of-sample-rate-comparisons
  • The sampling rate of a typical audio CD is 44.1kHz (44,100 Hertz or 44,100 samples per second)

  • Using the graphic above helps to answer the question, “Why does telephone hold music sound so bad?

What is sample resolution?

  • Sample resolution is the number of bits stored per sample of sound

  • Sample resolution is closely related to the colour depth of a bitmap image, they measure the same thing in different contexts

What effect do sample rate and sample resolution have?

 

Sample rate

Sample resolution

 

High

Low

High

Low

Playback quality

File size

Calculate Sound File Sizes

How do you calculate the size of a sound file?

  • Calculating the size of a sound file is carried out with the following formula:

    • Sample rate x duration x sample resolution

Example

Sound Files

(Sample Rate) x (Duration in seconds) (Sample Resolution)

Size of sound file = 

 

 

Sample rate

10

Samples per second

Duration

30

Seconds

Sample resolution

4

Number of bits stored per sample

10 x 30 x 4

=

1200 bits = 150 bytes

Worked Example

A student records a podcast about computer science for a school project.

Describe how an analogue sound wave is converted into digital form [3]

Answer

1 mark per bullet to max 3

  • (analogue) sound wave is sampled

  • …amplitude is measured

  • …at a point in time

  • Each sample/measurement is stored as a binary value

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注