Back to 课程

Computer-Science-A-level-Ocr

0% Complete
0/0 Steps
  1. 3-3-networks
    8 主题
  2. 3-2-databases
    7 主题
  3. 3-1-compression-encryption-and-hashing
    4 主题
  4. 2-5-object-oriented-languages
    7 主题
  5. 2-4-types-of-programming-language
    4 主题
  6. 2-3-software-development
    5 主题
  7. 2-2-applications-generation
    6 主题
  8. 2-1-systems-software
    8 主题
  9. 1-3-input-output-and-storage
    2 主题
  10. 1-2-types-of-processor
    3 主题
  11. 1-1-structure-and-function-of-the-processor
    1 主题
  12. structuring-your-responses
    3 主题
  13. the-exam-papers
    2 主题
  14. 8-2-algorithms-for-the-main-data-structures
    4 主题
  15. 8-1-algorithms
    10 主题
  16. 7-2-computational-methods
    11 主题
  17. 7-1-programming-techniques
    14 主题
  18. 6-5-thinking-concurrently
    2 主题
  19. 6-4-thinking-logically
    2 主题
  20. 6-3-thinking-procedurally
    3 主题
  21. 6-2-thinking-ahead
    1 主题
  22. 6-1-thinking-abstractly
    3 主题
  23. 5-2-moral-and-ethical-issues
    9 主题
  24. 5-1-computing-related-legislation
    4 主题
  25. 4-3-boolean-algebra
    5 主题
  26. 4-2-data-structures
    10 主题
  27. 4-1-data-types
    9 主题
  28. 3-4-web-technologies
    16 主题
课 Progress
0% Complete

Logic Gates

What is Boolean logic?

  • Boolean logic is used in computer science and electronics to make logical decisions

  • Boolean operators are either TRUE or FALSE, often represented as 1 or 0

  • Inputs and outputs are given letters to represent them

  • To define Boolean logic we use special symbols to make writing expressions much easier 

  • In A Level Computer Science, Boolean algebra is easily confused with Boolean logic, but they are not the same

    • Boolean logic refers to the principles of logic based on binary values

    • Boolean algebra is a mathematical system used to manipulate Boolean values

Combination of Boolean operators

  • Can be combined to form more complex expressions

  • Use parentheses to clarify the order of operations
    Example: NOT (TRUE AND FALSE) = TRUE

Evaluating Boolean expressions

  • There is a specific sequence for evaluating expressions with multiple operators just like in normal maths where BIDMAS applies

  • Brackets come first then NOT then AND then OR

  • Using Brackets can alter the standard order of operations

  • Expressions within parentheses are evaluated first, following the same NOT, AND, OR precedence inside the parentheses

  • Example: NOT (TRUE AND FALSE) equals NOT FALSE, which equals TRUE

Logic Gates

  • Logic gates are a visual way of representing a Boolean expression

  • The logic gates covered in this course are:

    • Conjunction (AND)

    • Disjunction (OR)

    • Negation (NOT)

    • Exclusive disjunction (XOR)

Conjunction (AND)

Operation

Circuit symbol

Notes

A ∧ B

A . B

and-gate

Returns TRUE only if both inputs are TRUE 

TRUE AND TRUE = TRUE

Otherwise = FALSE

Next highest precedence after NOT

Executes before OR operations

Disjunction (OR)

Operation

Circuit symbol

Explanation

A∨B

A+B

or-gate

Returns TRUE if either input is TRUE 

TRUE OR FALSE = TRUE 

FALSE OR FALSE = FALSE

Lowest precedence in Boolean expressions

Executes after NOT and AND operations

Negation (NOT)

Symbol

Circuit symbol

Notes

¬A

not-a
not-gate

Inverts the input value

NOT TRUE = FALSE

NOT FALSE = TRUE

Highest precedence in Boolean expressions

Executes before AND and OR operations

Exclusive Disjunction (XOR)

Operation

Circuit symbol

Notes

Acircled plusB

AB

 

xor-gate

Outputs TRUE if the inputs are different

Outputs FALSE if they are the same

Examiner Tips and Tricks

  • Understanding the order of operations is crucial for correctly interpreting complex Boolean expressions

  • Misunderstanding the order can lead to incorrect results

  • Always use parentheses for clarity when combining multiple Boolean operations

Truth Tables

  • A tool used in logic and computer science to visualise the results of Boolean expressions

  • They represent all possible inputs and the associated outputs for a given Boolean expression

Conjunction (AND)

Circuit symbol

Truth Table

<img alt=”and-gate” class=”ContentBlock_figure__vJw2q” data-nimg=”1″ decoding=”async” height=”90″ loading=”lazy” sizes=”(max-width: 320px) 320w, (max-width: 640px) 640w, (max-width: 960px) 960w, (max-width: 1280px) 1280w, 1920w” src=”https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=3840/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png” srcset=”https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=16/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png 16w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=32/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png 32w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=48/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png 48w, https://cdn.savemyexams.com/cdn-cgi/i

Responses

您的邮箱地址不会被公开。 必填项已用 * 标注