Computer-Science-A-level-Ocr
-
3-3-networks8 主题
-
3-2-databases7 主题
-
3-1-compression-encryption-and-hashing4 主题
-
2-5-object-oriented-languages7 主题
-
2-4-types-of-programming-language4 主题
-
2-3-software-development5 主题
-
2-2-applications-generation6 主题
-
2-1-systems-software8 主题
-
1-3-input-output-and-storage2 主题
-
1-2-types-of-processor3 主题
-
1-1-structure-and-function-of-the-processor1 主题
-
structuring-your-responses3 主题
-
the-exam-papers2 主题
-
8-2-algorithms-for-the-main-data-structures4 主题
-
8-1-algorithms10 主题
-
7-2-computational-methods11 主题
-
7-1-programming-techniques14 主题
-
capturing-selecting-managing-and-exchanging-data
-
entity-relationship-diagrams
-
data-normalisation
-
relational-databases
-
hashing
-
symmetric-vs-asymmetric-encryption
-
run-length-encoding-and-dictionary-coding
-
lossy-and-lossless-compression
-
polymorphism-oop
-
encapsulation-oop
-
inheritance-oop
-
attributes-oop
-
methods-oop
-
objects-oop
-
capturing-selecting-managing-and-exchanging-data
-
6-5-thinking-concurrently2 主题
-
6-4-thinking-logically2 主题
-
6-3-thinking-procedurally3 主题
-
6-2-thinking-ahead1 主题
-
6-1-thinking-abstractly3 主题
-
5-2-moral-and-ethical-issues9 主题
-
5-1-computing-related-legislation4 主题
-
4-3-boolean-algebra5 主题
-
4-2-data-structures10 主题
-
4-1-data-types9 主题
-
3-4-web-technologies16 主题
-
environmental-effects
-
automated-decision-making
-
computers-in-the-workforce
-
layout-colour-paradigms-and-character-sets
-
piracy-and-offensive-communications
-
analysing-personal-information
-
monitoring-behaviour
-
censorship-and-the-internet
-
artificial-intelligence
-
the-regulation-of-investigatory-powers-act-2000
-
the-copyright-design-and-patents-act-1988
-
the-computer-misuse-act-1990
-
the-data-protection-act-1998
-
adder-circuits
-
flip-flop-circuits
-
simplifying-boolean-algebra
-
environmental-effects
boolean-logic
Logic Gates
What is Boolean logic?
-
Boolean logic is used in computer science and electronics to make logical decisions
-
Boolean operators are either TRUE or FALSE, often represented as 1 or 0
-
Inputs and outputs are given letters to represent them
-
To define Boolean logic we use special symbols to make writing expressions much easier
-
In A Level Computer Science, Boolean algebra is easily confused with Boolean logic, but they are not the same
-
Boolean logic refers to the principles of logic based on binary values
-
Boolean algebra is a mathematical system used to manipulate Boolean values
-
Combination of Boolean operators
-
Can be combined to form more complex expressions
-
Use parentheses to clarify the order of operations
Example: NOT (TRUE AND FALSE) = TRUE
Evaluating Boolean expressions
-
There is a specific sequence for evaluating expressions with multiple operators just like in normal maths where BIDMAS applies
-
Brackets come first then NOT then AND then OR
-
Using Brackets can alter the standard order of operations
-
Expressions within parentheses are evaluated first, following the same NOT, AND, OR precedence inside the parentheses
-
Example: NOT (TRUE AND FALSE) equals NOT FALSE, which equals TRUE
Logic Gates
-
Logic gates are a visual way of representing a Boolean expression
-
The logic gates covered in this course are:
-
Conjunction (AND)
-
Disjunction (OR)
-
Negation (NOT)
-
Exclusive disjunction (XOR)
-
Conjunction (AND)
|
Operation |
Circuit symbol |
Notes |
|---|---|---|
|
A ∧ B A . B |
![]() |
Returns TRUE only if both inputs are TRUE TRUE AND TRUE = TRUE Otherwise = FALSE Next highest precedence after NOT Executes before OR operations |
Disjunction (OR)
|
Operation |
Circuit symbol |
Explanation |
|---|---|---|
|
A∨B A+B |
![]() |
Returns TRUE if either input is TRUE TRUE OR FALSE = TRUE FALSE OR FALSE = FALSE Lowest precedence in Boolean expressions Executes after NOT and AND operations |
Negation (NOT)
|
Symbol |
Circuit symbol |
Notes |
|---|---|---|
|
¬A |
![]() |
Inverts the input value NOT TRUE = FALSE NOT FALSE = TRUE Highest precedence in Boolean expressions Executes before AND and OR operations |
Exclusive Disjunction (XOR)
|
Operation |
Circuit symbol |
Notes |
|---|---|---|
|
A A∨B
|
![]() |
Outputs TRUE if the inputs are different Outputs FALSE if they are the same |
Examiner Tips and Tricks
-
Understanding the order of operations is crucial for correctly interpreting complex Boolean expressions
-
Misunderstanding the order can lead to incorrect results
-
Always use parentheses for clarity when combining multiple Boolean operations
Truth Tables
-
A tool used in logic and computer science to visualise the results of Boolean expressions
-
They represent all possible inputs and the associated outputs for a given Boolean expression
Conjunction (AND)
|
Circuit symbol |
Truth Table |
|---|---|
|
<img alt=”and-gate” class=”ContentBlock_figure__vJw2q” data-nimg=”1″ decoding=”async” height=”90″ loading=”lazy” sizes=”(max-width: 320px) 320w, (max-width: 640px) 640w, (max-width: 960px) 960w, (max-width: 1280px) 1280w, 1920w” src=”https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=3840/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png” srcset=”https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=16/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png 16w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=32/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png 32w, https://cdn.savemyexams.com/cdn-cgi/image/f=auto,width=48/https://cdn.savemyexams.com/uploads/2023/07/and-gate.png 48w, https://cdn.savemyexams.com/cdn-cgi/i
|




Responses