Back to 课程

Biology_Alevel_Ocr

0% Complete
0/0 Steps
  1. 4-1-communicable-diseases-disease-prevention-and-the-immune-system
    16 主题
  2. 4-2-biodiversity
    10 主题
  3. 4-3-classification-and-evolution
    15 主题
  4. 5-1-communication-and-homeostasis
    4 主题
  5. 5-2-excretion
    10 主题
  6. 5-3-neuronal-communication
    9 主题
  7. 5-4-hormonal-communication
    4 主题
  8. 5-5-plant-and-animal-responses
    16 主题
  9. 5-6-photosynthesis
    10 主题
  10. 5-7-respiration
    14 主题
  11. 6-1-cellular-control
    7 主题
  12. 6-2-patterns-of-inheritance
    13 主题
  13. 6-3-manipulating-genomes
    11 主题
  14. 6-4-cloning-and-biotechnology
    14 主题
  15. 6-5-ecosystems
    7 主题
  16. 6-6-populations-and-sustainability
    6 主题
  17. 1-1-practical-skills-written-assessment
    7 主题
  18. 1-2-practical-skills-endorsement-assessment
    16 主题
  19. 2-1-cell-structure
    9 主题
  20. 2-2-biological-molecules
    17 主题
  21. 2-3-nucleotides-and-nucleic-acids
    8 主题
  22. 2-4-enzymes
    9 主题
  23. 2-5-biological-membranes
    9 主题
  24. 2-6-cell-division-cell-diversity-and-cellular-organisation
    11 主题
  25. 3-1-exchange-surfaces
    7 主题
  26. 3-2-transport-in-animals
    12 主题
  27. 3-3-transport-in-plants
    11 主题
课 10, 主题 10
In Progress

5-7-9-anaerobic-respiration

课 Progress
0% Complete

Anaerobic Respiration

  • Sometimes cells experience conditions with little or no oxygen

  • There are several consequences when there is not enough oxygen available for respiration:

    • There is no final acceptor of electrons from the electron transport chain

    • The electron transport chain stops functioning

    • No more ATP is produced via oxidative phosphorylation

    • Reduced NAD and FAD aren’t oxidised by an electron carrier

    • No oxidised NAD and FAD are available for dehydrogenation in the Krebs cycle

    • The Krebs cycle stops

  • However, there is still a way for cells to produce some ATP in low oxygen conditions through anaerobic respiration

Anaerobic pathways

  • Some cells are able to oxidise the reduced NAD produced during glycolysis so it can be used for further hydrogen transport

  • This means that glycolysis can continue and small amounts of ATP are still produced

  • Different cells use different pathways to achieve this

    • Yeast and microorganisms use ethanol fermentation

    • Other microorganisms and mammalian muscle cells use lactate fermentation

Ethanol fermentation

  • In this pathway reduced NAD transfers its hydrogens to ethanal to form ethanol

  • In the first step of the pathway pyruvate is decarboxylated to ethanal

    • Producing CO2

  • Then ethanal is reduced to ethanol by the enzyme alcohol dehydrogenase

  • Ethanal is the hydrogen acceptor

  • Ethanol cannot be further metabolised; it is a waste product

Ethanol Fermentation, downloadable AS & A Level Biology revision notes

The pathway of ethanol fermentation

Lactate fermentation

  • In this pathway reduced NAD transfers its hydrogens to pyruvate to form lactate

  • Pyruvate is reduced to lactate by enzyme lactate dehydrogenase

  • Pyruvate is the hydrogen acceptor

  • The final product lactate can be further metabolised

Lactate Fermentation, downloadable AS & A Level Biology revision notes

The pathway of lactate fermentation

Metabolization of lactate

  • After lactate is produced two things can happen:

  1. It can be oxidised back to pyruvate which is then channelled into the Krebs cycle for ATP production

  2. It can be converted into glycogen for storage in the liver

  • The oxidation of lactate back to pyruvate needs extra oxygen

    • This extra oxygen is referred to as an oxygen debt

    • It explains why animals breathe deeper and faster after exercise

Examiner Tips and Tricks

Note that ethanol fermentation is a two-step process (lactate fermentation is a one-step process). Carbon dioxide is also produced alongside the waste ethanol. This waste ethanol is what makes yeast vital in making alcoholic drinks like beer!