Back to 课程

Biology_Alevel_Ocr

0% Complete
0/0 Steps
  1. 4-1-communicable-diseases-disease-prevention-and-the-immune-system
    16 主题
  2. 4-2-biodiversity
    10 主题
  3. 4-3-classification-and-evolution
    15 主题
  4. 5-1-communication-and-homeostasis
    4 主题
  5. 5-2-excretion
    10 主题
  6. 5-3-neuronal-communication
    9 主题
  7. 5-4-hormonal-communication
    4 主题
  8. 5-5-plant-and-animal-responses
    16 主题
  9. 5-6-photosynthesis
    10 主题
  10. 5-7-respiration
    14 主题
  11. 6-1-cellular-control
    7 主题
  12. 6-2-patterns-of-inheritance
    13 主题
  13. 6-3-manipulating-genomes
    11 主题
  14. 6-4-cloning-and-biotechnology
    14 主题
  15. 6-5-ecosystems
    7 主题
  16. 6-6-populations-and-sustainability
    6 主题
  17. 1-1-practical-skills-written-assessment
    7 主题
  18. 1-2-practical-skills-endorsement-assessment
    16 主题
  19. 2-1-cell-structure
    9 主题
  20. 2-2-biological-molecules
    17 主题
  21. 2-3-nucleotides-and-nucleic-acids
    8 主题
  22. 2-4-enzymes
    9 主题
  23. 2-5-biological-membranes
    9 主题
  24. 2-6-cell-division-cell-diversity-and-cellular-organisation
    11 主题
  25. 3-1-exchange-surfaces
    7 主题
  26. 3-2-transport-in-animals
    12 主题
  27. 3-3-transport-in-plants
    11 主题
课 Progress
0% Complete

Variation: t-test worked example

  • The t test method can be used to determine whether the means of two data sets are significantly different

Worked Example

The ear lengths of two populations of rabbits were measured.

Ear lengths of population A (mm):

62, 60, 59, 61, 60, 58, 59, 60, 57, 56, 59, 58, 60, 59, 57

Ear lengths of population B (mm):

58, 59, 57, 59, 59, 57, 55, 60, 57, 58, 59, 58, 57, 58, 59

Use the t-test to determine whether there is a significant difference in ear length between the two populations.

  • Null hypothesis: There is no significant difference between the ear lengths of the rabbits in populations A and B

  • Sample sizes:

    • Population A: n1 = 15

    • Population B: n2 = 15

Step 1: calculate the mean for each data set:

Mean for population A 1 = 885 ÷ 15 = 59 mm

Mean for population B 2 = 870 ÷ 15 = 58 mm

Step 2: calculate the standard deviation (s) for each data set

Calculating Standard Deviation
  • Calculate ∑(x – x̄)2

Population A

Population B

Difference between value and mean

(x – x̄)

Difference between value and mean squared

(x – x̄)2

Difference between value and mean

(x – x̄)

Difference between value and mean squared

(x – x̄)2

62 – 59 = 3

9

58 – 58 = 0

0

60 – 59 = 1

1

59 – 58 = 1

1

59 – 59 = 0

0

57 – 58 = -1

1

61 – 59 = 2

4

59 – 58 = 1

1

60 – 59 = 1

1

59 – 58 = 1

1

58 – 59 = -1

1

57 – 58 = -1

1

59 – 59 = 0

0

55 – 58 = -3

9

60 – 59 = 1

1

60 – 58 = 2

4

57 – 59 = -2

4

57 – 58 = -1

1

56 – 59 = -3

9

58 – 58 = 0

0

59 – 59 = 0

0

59 – 58 = 1

1

58 – 59 = -1

1

58 – 58 = 0

0

60 – 59 = 1

1

57 – 58 = -1

1

59 – 59 = 0

0

58 – 58 = 0

0

57 – 59 = -2

4

59 – 58 = 1

1

Total ∑(x – x̄)2

36

Total ∑(x – x̄)2

22

  • Calculate square root of fraction numerator sum for blank of open parentheses straight x minus straight x with bar on top close parentheses squared over denominator straight n minus 1 end fraction end root

Population A (n1 = 15)

</